Molten Salt Reactor Development

2017 Molten Salt Reactor Workshop Oak Ridge Tennessee

Lou Qualls, Ph.D.

National Technical Director for MSRs quallsal@ornl.gov

Reactor and Nuclear Systems Division Oak Ridge National Laboratory

October 3, 2017

ORNL is managed by UT-Battelle for the US Department of Energy

National Laboratory

Why <u>Nuclear</u>?

Energy density

- Low-carbon electricity
- National energy security
- Diverse energy portfolio

Figure 2-1. A PB-FHR pebble fuel element (Credit: D. Holcomb, ORNL).

- PB-FHR fuel pebbles
 - Four 3.0-cm diameter pebbles can provide electricity for a year for an average U.S. household
 - 8.1 tons of anthracite coal, or 17 tons of lignite coal are needed to produce the same amount of electricity using a coal power plant.

Why Advanced Reactors?

- Better safety posture
- Lower costs
- Reduced accident consequences
- Expanded siting options
- Better resource utilization
- Ability to close the fuel cycle
- Reduced waste products

High-temperature, low-pressure systems with chemically inert fluids

- Lower-cost components
- Dry heat rejection capability

Large temperature margins to boiling

- Passive safety response
- Fewer safety critical systems
- Large *baseload* or *small modular* deployment
- Continual salt and fission product processing possible
 - Reduced emergency planning zone (?)
 - Ability to use UNF
 - Ability to help close the fuel cycle and reduce waste to repositories

MSR Passive Safety: The Freeze Plug

•

MSRs are a broad class of advanced reactors

- MSRs are *revolutionary* for the implementation of nuclear power
- MSRs can revitalize the U.S. nuclear energy sector
- MSRs are *near-term* innovations

National Laboratory

How do you get into a market? Sell a product or provide a service

Either

- Produce cost-competitive electricity or industrial heat
 - Lower capital cost
 - Lower O&M costs

• Or

Play a positive role in *closing the fuel cycle*

• Or

- Uniquely meet the needs of a *niche market*
 - High quality heat
 - "expensive" power for special applications

What do we need to get MSRs to market?

- Materials, salts, and an understanding of their behavior
- Enabling technology
- Design rules and standards
- Reactor designs and mod-sim methods to effectively evaluate their performance
- A convincing story of reactor safety and source term management
- Understanding and agreements about ultimate waste forms
- A business case for the concept
- A well-defined path for licensing of the first reactors
- A follow-on path for licensing commercial reactors
- Interested investors and a supportive government
- Supply chains and supporting infrastructure
- Initial fuel core loadings

New Chemistry and Reactor Modeling Challenges

Understand reactor performance and behavior

 Develop and integrate dynamic salt chemistry models with neutronic and thermal hydraulic analyses for reactor performance evaluation all the way through severe accident transients

Understand source term behavior

- Develop constituent lifecycle data and models to account for source term behavior

DOE MSR FY18 Priorities

- Materials and salt combinations and their interactions
- Salt chemistry data, database, and chemistry models
- Enabling technology
- Concept evaluation
- Modeling and simulation
- Licensing and safeguards
- Salt processing, reuse, and waste forms

Which Molten Salt Reactors are we interested in?

Which Molten Salt Reactors are we interested in?

- All of them
 - "if you're interested in it, we're interested in it"
- The market needs diversity

Which Molten Salt Reactors are we interested in?

- All of them
 - "if you're interested in it, we're interested in it"
- The market needs diversity

- Our job is to facilitate an environment in which new reactors can be developed
- We are <u>not</u> designing a DOE reactor or picking winning designs

Each concept requires acceptable materials and salts

National Laboratory

14 MSR Vendors Forum – 5/1/17 – ORNL

Each concept needs a "Cradle-to-Grave" plan

We've got to do something soon (M. Herald and M. Adkisson)

DOE is taking a focused, near-term development approach to reactor development and deployment

National Laborator

Notional Timeline to MSR Deployment

	2015		202	0		2025		2035		 204
Materials and salt selection					_					
Salt processing and manufacturing										
					_		_		_	
Salt and material corrosion studies					_		_		_	
Reactor concent development							 		_	
Materials qualiification										
•										
Enabling technology development										
							_			
Source term characterization and behavior									_	
Reactor performance evaluation									_	
Reactor performance evaluation										
Licensing framework development										
Test reactor design, construction, and operation							_			
		_							_	
Prototype reactor design and operation	_	 							_	
Commercial plant design and construction										
contraction plant design and construction									_	
Commercial plant deployment										
										_

Molten Salt Reactor Experiment

Timeline

- Salt loaded into tanks Oct. 24, 1964
- Salt first circulated through core Jan. 12, 1965
- $_{\circ}\,$ First criticality (U^{235}) June 1, 1965
- First operation in megawatt range Jan. 24, 1966
- Full power reached May 23, 1966
- $_{\circ}\;$ Nuclear operation with U^{235} concluded
- $_{\circ}~$ Strip uranium from fuel salt Aug. 23-29, 1968
- $_{\circ}~$ First criticality with U^{233} Oct. 2, 1968
- $_{\circ}~$ Full power reached with U^{233} Jan. 28, 1969
- Nuclear operation concluded **Dec. 2, 1969**

Questions?

Thank you

20 MSR Vendors Forum - 5/1/17 - ORNL