

Office of Nuclear Energy

Molten Salt Reactor Workshop DOE's Enhanced R&D Focus on MSRs

Brian K. Robinson Program Manager, Molten Salt Reactors

Oak Ridge, TN October 3 - 4, 2017

Advanced Reactor Technologies Program Overview, Mission & Structure

• Program Mission:

- Identify and resolve the technical challenges to enable transition of advanced non-LWR reactor technologies and systems to support detailed design, regulatory review and deployment by the early 2030's.
- POC's
 - Director Alice Caponiti (DOE-HQ)
 - MSR Program Manager Brian K. Robinson (DOE-HQ)
 - National Technical Director Lou Qualls (ORNL)

Advanced Reactor Technologies Research Questions

- R&D programs are working to address several high level questions related to advanced reactor development and deployment, including:
 - How can we improve the affordability of nuclear power?
 - How can we improve the inherent safety of advanced nuclear reactors?
 - How can we improve on the proliferation resistance of advanced reactors?
 - How can we expand nuclear technologies into non-traditional nuclear energy markets?
 - How can we increase the performance and efficiency of advanced nuclear plants through new materials, advanced systems or components?

Advanced Reactor Technology R&D Activities

- The previous MSR Workshop (2016) identified two initiatives:
 - "Develop multiscale models to understand the chemistry of fission products in operating reactors (high performance computing, integration with neutronics and thermohydraulics)"
 - "Develop databases and computational methods for phase diagram development"
- The following resulting activities being considered for future R&D activities:
 - Salt property data collection and salt property database development
 - Salt property predictive modeling (fundamental salt chemistry)
 - Salt and materials interface behavior
 - Salt constituent evolution due to exposures under reactor conditions
 - Salt processing during reactor operations (fission product management)
 - Salt monitoring and processing during reactor operation (salt corrosion chemistry)

Advanced Reactor Technology MSR Activities

• Nuclear Energy University Program (NEUP), 2011-2017

- \$800K (FHR)
 - Design of a Commercial-Scale, Fluoride-Salt-Cooled, High-Temperature Reactor, Investigation of Overcooling Transients that include Freezing,
 - In Fluoride-Salt Cooled High-Temperature Reactors (FHRs)
- \$4.6M (MSR) NuSTEM, Methods to Predict Thermal Radiation and to Design Scaled Separate and Integral Effects Testing
- \$800K (Materials) Bimetallic Composite (Incoloy 800H/Ni-201) Development and Compatibility in Flowing FLiBe

Integrated Research Projects (IRP)

- \$7.5M (FY11) MIT, Wisconsin, UC Berkeley; High-Temperature Salt-Cooled Reactor for Power and Process Heat
- \$10M (FY14) MIT, Georgia Tech, Integrated Approach to FHR Technology and Design Challenges
- \$3M (FY17) TAMU, UC-Berkey, SAMOFAR, Grand Challenge Problem for Nuclear Energy

Kairos Power UCB PB-FHR

Molten Salt October 3 -

Advanced Reactor Technology MSR Interfaces 1/2

• Gateway for Acceleration Innovation in Nuclear (GAIN)

- FY16 2 salt related awards in FY16 (\$0.4M)
- FY17 7 salt related awards in FY17 (\$2.1M)
- Industry Engagements

	Concept	
Company	Туре	DOE Supported Work
TerraPower (MCFR)	MCFR	ARC 15 (partnered with Southern Co. Services)
Elysium	MCFR	GAIN Voucher (FY17)
	MSR solid	
Kairos	fueled	GAIN Voucher (FY17)
	MSR liquid	
Terrestrial Energy	fueled	GAIN Voucher (FY16 and FY17)
	MSR liquid	
Transatomic Power	fueled	GAIN Voucher (FY16 and FY17)
Southern Company Services	MCFR	ARC 15 (Molten chloride fast reactor development)

6

Advanced Reactor Technology MSR Interfaces 2/2

- Advanced Reactor Working Group (NEI)
 - Quarterly meetings
 - January 2017 Presentations available on GAIN website Includes overview of current U.S. MSR modeling and simulation tools
- MSR Technology Working Group (TWG)
 - Quarterly meetings
 - December 2016 Letter outlining Separate Effects Test Program for MSRs
- Molten Salt Chemistry Workshop
 - April 2017 Emphasized identifying fundamental knowledge gaps
- Office of Science Basic Energy Science (BES)
 - August 2017 Establish the science base to realize molten salt coolants and liquid fuels
- Small Business Innovation Research (SBIR)

Elysium USA MCSFR

Potential MSR FY18 R&D Activities

Technology Development and Demonstration

• Hardware and instrumentation needs are evaluated to ensure enabling capabilities exist for chemistry monitoring, corrosion testing, instrumentation and control, and component development

Methods, Modeling and Validation

• Ensure neutronic and thermal-hydraulic models are readily adaptable for MSRs; predictive chemistry models related to salt property evolution, salt and material interactions, and salt constituent inventory tracking

Fuel Qualification

• Develop and understand fuel salt chemistry and associated regulatory challenges

Advanced Materials Development

• Develop and qualify of advanced structural materials by leveraging international collaborations (DOE, KAERI, EU, JAEA, PBMR) to ensure compliance with ASME Section III Division 5 for High Temperature Reactors

Coolant Chemistry

• Establish a DOE database and develop predictive modeling frameworks

American Nuclear Society Standards

- Currently there are four standards under development supporting MSRs.
 - ANS-20.1, "Nuclear Safety Design Criteria for Fluoride Salt-Cooled High-Temperature Reactor Nuclear Power Plants" (in development)
 - ANS-20.2, "Nuclear Safety Design Criteria and Functional Performance Requirements for Liquid-Fuel Molten Salt Reactor Nuclear Power Plants" (in development)
 - ANS-30.1, "Integrating Risk and Performance Objectives into New Reactor Nuclear Safety Designs" (in development-first draft)
 - ANS-30.2, "Categorization and Classification of Structures, Systems, and Components for New Nuclear Power Plants" (in development)

ANS Standards for Research Reactors: NUREG 1537

- In NUREG 1537 eleven ANS standards for research reactors are referenced
- All will need to be examined to determine applicability for use in licensing a MSR test reactor

NUREG-1537, Part 1	United States Nuclear Regulatory Commission Protecting People and the Environment	NUREG-1537, Part 2		
Guidelines for Preparing and Reviewing Applications for the Licensing of Non-Power Reactors		Guidelines for Preparing and Reviewing Applications for the Licensing of Non-Power Reactors		
	Standard Review Plan and Acceptance Criteria			
	Manuscript Completed: February 1996 Date Published: February 1996			
	NUREG-1537, Part 1	<image/> <text><text><text><text></text></text></text></text>		

Summary

- Over the past few years DOE has Enhanced R&D Focus on MSRs
- While there are many MSR challenges, most can be overcome through collaborative efforts of industry, national laboratories and universities.
- Thank you for your support and we look forward to working with you.

