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SCALE Code System

Neutronics and Shielding Analysis Enabling Nuclear Technology Advancements — http://scale.ornl.gov

Practical tools relied upon for design, operations and regulation
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SCALE Code System

Analysis enabling nuclear technology advancements
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SCALE Code System
NRC'’s reactor licensing path
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Liquid-Fueled Molten Salt Reactors
Extending methods for solid fuel reactors

« Solid fuel reactor characteristics

— Fission products and actinides remain with the fuel until reprocessing (if applicable)
— Excess reactivity control occurs with soluble boron/burnable absorbers

T i

e rhoboe , , e e
 Lattice physics UYEY ey e Burnup-dependent
: calculation OO0 PRI constants
T &E;vﬁ / \ .
) ™ 2 ' ) COCsmUAr
L o 5@ (e.g., PARCS)
eocesele

» Liquid fuel reactor characteristics

— Fuel flows with carrier material (delayed neutron precursor drift)
— Includes continuous and batch chemical processes
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Motivation
Develop MSR modeling and simulation capabilities in SCALE

* Account for the flowing fuel materials in a liquid-fueled system
— Model precursor drift and its effect on neutronics and depletion
— Remove isotopes with specific rates or portions of the fuel salt

* Draw on reactor physics tools within the SCALE code system
— Neutron transport and depletion
— Strong quality assurance program

* Provide applicable ORNL modeling and simulation tools to liquid-fueled
reactor problems

— Assessment of MSR impact on fuel cycle outcomes
— Fuel cycle and core optimization and design
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ChemTriton Molten Salt Reactor Analysis
MSR startup fuel cycle analysis

 Analysis of a molten salt breeder reactor (¢33U/Th fuel, graphite moderated)
startup with alternate fissile material without design changes

— Composition of the initial (startup) fuel salt has a significant effect on operation
— Non-fissile heavy metals loaded at startup reside in the reactor for long times

— Neutron spectrum softens during operation : —— —
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ChemTriton Molten Salt Reactor Analysis
Transatomic Power GAIN voucher project

» Two-dimensional analysis of the Transatomic Power (TAP) design
— Calculations confirm TAP maximum burnup and operation time
— Critical salt volume fraction (SVF) function implemented into ChemTriton
— Calculated isotopic content of fuel salt (and plutonium generated) over time
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Molten Salt Reactor Modeling and Simulation Tools
Precursor drift model

* A 1D precursor drift model has been implemented into SCALE
— Considers a one-dimensional velocity and power profile

— Accounts for precursors flowing through the loop before decaying

— 2D transport model used to generate group constants for a 15 cm region before the

precursor concentration
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Molten Salt Reactor Precursor Drift Analysis
Explore effects on data, criticality, and group constants

 Large effect on the number of neutrons emitted per fission

* More than six times the amount of delayed precursors are generated in the

15 cm region with respect to the solution without precursor drift

- Effect on criticality align with theoretical expectations
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SCALE-calculated core-averaged parameters using flow-
corrected constants

Two-Group | No drift | Middle 15cm | Last15cm
Constants (% difference) | (% difference)
(V) 1.243 1.241 (0.19) 1.268 (1.93)
(VXs), 7.136 7.125 (0.15) 7.250 (1.57)
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Ongoing Efforts
SCALE continuous isotopic removal and additional capabilities

* Integrating this removal capability with the transport and depletion
modules within SCALE

— Provide the SCALE transport and depletion tool with access to this capability
— Develop an interface to interact with these tools

— Develop a method to include removed materials
- Expand transition rate matrix to include removed elements
- Enables tracking of waste streams from MSRs

— Intentional generic implementation to provide a broader application space
» Continuous-energy Monte Carlo nodal data generation capability
» Extension of additional SCALE lattice physics tools for MSR analysis
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