Multiphysics Simulations of Molten Salt Reactors

Benjamin S. Collins, PhD

R&D Staff Reactor and Nuclear Systems Division Nuclear Science and Engineering Directorate

C. Gentry, R. Salko, V. de Almeida, Z. Taylor, A. Wysocki

ORNL is managed by UT-Battelle for the US Department of Energy

What do we need to model a Molten Salt Reactor?

- Reactor Physics
 - Neutron transport, delayed neutron precursor drift, isotopic transmutation
- Thermal Hydraulics
 - Flow and heat transport through upper/lower plenum, core, primary loop
- Thermochemistry
 - Chemical state at a range of temperatures and fission product concentrations
- Mass Transport
 - How are species moving through the solution
- Corrosion
 - How much and where

Multiphysics simulations are required for MSRs

Adapting CASL tools for MSR analysis

 In FY17, ORNL funded an LDRD to adapt tools developed for the CASL program to model molten salt reactors

VERA Core Simulator Methods

Virtual Environment for Reactor Applications

WB1C11 End-of-Cycle Pin Exposure Distribution

<u>ORIGEN</u>

Isotopic depletion and decay in >2M regions tracking 263 isotopes

WB1C11 Middle-of-Cycle Coolant Density Distribution

WB1C11 Beginning-of-Cycle Pin Power Distribution

<u>CTF</u>

Subchannel thermal-hydraulics with transient two-fluid, three-field (i.e., liquid film, liquid drops, and vapor) solutions in 14,000 coolant channels with crossflow

<u>MPACT</u>

Advanced pin-resolved 3-D wholecore neutron transport in 51 energy groups and >5M unique cross section regions

Initial simulations of TransAtomic-like Design

- Models for MPACT and CTF are built based on updated geometry specifications (5x5 rod arrays / 68 assemblies)
 - Zirconium hydride rods inserted into uranium fluoride salt
 - Moderator rod banking strategy approximated similar to LWRs
 - Assumed guide tubes around moderator rod locations

"Transatomic Technical White Paper, V 2.0," http://www.transatomicpower.com, Transatomic Power Corporation (July 2016), Accessed July 2016.

-Salt

-Clad -Moderator

Initial critical configuration based on rod search

Critical configuration

First moderator bank inserted to 66%

100

90

80

Core depletion with moderator rod insertion

 Moderator rod insertion occurs in banked strategy

– A-1, B-1, A-2, B-2, etc.

 Reactor is depleted at nominal power and bank position is determined by criticality search

Power Shape Evolution with Moderator Rod Inserted

Mass Transport Modeling and Simulation Progress

Based on ongoing review of the MSRE documentation

Mechanistic Theory	Modeling	Simulation
 Development of multicomponent, thermo- chemical governing 	 Volume-averaged two- phase, multicomponent fluid mixture 	Extend CTF code to thermo-chemical transport
equations of transport for mixtures of salts undergoing fission	 Focus on volatile fission products (<i>e.g.</i> Xe) Channel flow average 	Coupling to ORIGEN for source terms of fission products
 Coupled redox chemical reactions and nuclear reactions 	model for MSRE geometry for implementation in CTF	Coupling to thermochemistry through Thermochemica

Leverage

thermochemistry

 Rigorous ionic diffusion via chemical activity

Mass Transport with Nuclear Decay

Mixture Theory for Molten Salts in Fission

Single-phase development in progress

Multicomponent balance of mass

constitutive equation function of chemical potentials, temperature, and pressure

- chemical reaction mechanisms, kinetics models, decay

> significant undertaking; progressive development

Mixture Theory for Molten Salts in Fission (cont.)

Mixture balance of momentum

unknown territory; starting with simple assumptions

Mixture Theory for Molten Salts in Fission (cont.)

- Mixture balance of energy (single temperature)
- Mixture imbalance of entropy
- This is work in progress to state consistent energy balance and entropy considerations for the development of constitutive equations
- A turbulent model may be needed sooner than later
- A gas-liquid interface mass transfer model will be next in development focused on volatile fission products

Conclusions and Future Work

- Molten Salt Reactors require multiphysics simulations to understand the behavior of the salt and reactor components throughout the lifetime of the reactor
- Initial conversion of CASL tools focused on traditional core simulator and the development of a new mass transport component
- Continuing work in FY18 will focus on
 - Integration of thermochemistry and surface corrosion models
 - Extension of core simulator for other reactor designs
 - Validation of coupled system against existing MSRE data

Questions

Research sponsored by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U. S. Department of Energy.

Noble Metals Mass Transport

Rigorous continuum theory, modeling, and simulation needed for noble metals

ORNL/TM-1972/3884

Table 5.1

Noble Notel Distuidantion in the MCDD

NODLE METAL DISTFIDUTION IN THE MERL"			
	During 235 U Runs	During 233U Runs	
Noble Metals on Heat Exchanger Surfaces	40%	6%	
Noble Metals on Other Hastelloy-N Surfaces in Fuel Loop	50	8	
Noble Metals on Graphite Surfaces in Core	1	0.4	
Noble Metals in Pump Bowl, Overflow Tank, Off-Gas System, etc. (by Difference)	9	86	
22220200007	100%	100%	

- Dispersion of species in the system is a reflection of complex thermochemical transport
- Noble metals fate was controversial in the MSRE
- Reactor operation changes were not correlated with findings
- Fission reactions may substantially affect mass transport in molten salts
- We are addressing this overlooked underlying phenomena

