

Salt chemistry and Redox control

Jinsuo Zhang^{1,2}

- 1) Virginia Tech
- 2) Ohio State University

- PI: Dr. Jinsuo Zhang, Dr. Shaoqiang Guo
- Students: Ryan Chesser, Yafei Wang (graduated from OSU, current Ph.D student of VT), Qiufeng Yang, Nik Shay (graduated), Bill Cohen (Graduated), Wentao Zhou (graduated), Evan Wu (graudated)
- □ Visiting Scholar: Dr. Wei Wu

All the experimental measurements presented were conducted at The Ohio State University

Salt impurities/source term

- Tritium
- □ Noble Gas (Xe, Kr)
- Noble metals (Nb, Mo, Tc, Ru, Rh, Ag, Cd, In, Sn, Zn, Ga, Ge, As)
- Halogens (I, Br)
- Tellurium Group (Te, Sb, Se)
- Barium, Strontium (Ba, Sr)
- Rare earth/alkaline metals (Y, La, Ce, Pr, Nd, Pm, Gd, Tb, Dy, Ho, Er, Zr, Sm, Eu, Sr, Ba, Rb, Cs)
- Actinide (U, Pu, Np)
- Corrosion Products (Ni, Fe, Cr)

- Review the available data
- Measure fundamental data of element in the salt and liquid Bi
- Develop chemical (redox) control method
- Develop and design salt purification system in operation

Measurement-experimental set up

- A three-electrode system: working electrode (WE); Count electrode (CE) and Reference electrode (RE).
- □ Glove box (purged with Argon): the O₂ and H₂O was controlled below 4.0 during all experiments.
- □ Electrochemical technology: CV, EIS, LP, etc
- Properties measured: apparent potential, diffusion coefficient, activity coefficient, exchange current,

Determining of reference potential

Zone I: 5s current pulse is applied, and the potential of the W electrode becomes more negative due to the formation of a potassium layer on electrode surface. More negative potential at greater current due to the potential drop in electrolyte.

Zone II: No current applied. Consistent potential represents K⁺/K potential.

Zone III: Potential returns back due to dissolution of K.

Electrolyte resistance of 0.12 Ω ·cm² at 650°C, 0.11 Ω ·cm² at 700°C and 0.09 Ω ·cm² at 750°C

Nuclear Materials and Fuel Cycle center

Diffusion coefficient and Apparent potential of

Nuclear Materials and Fuel Cycle center

Dy and

Diffusion activation energy: 51.5 kJ/mol for Dy³⁺, 127 kJ/mol for La³⁺

Both diffusion coefficient and apparent potential increases with temperature

Fundamental data of Corrosion Products

Exchange current density of Fe and Cr

 Activation energy: 94.42 kJ/mol for Cr/Cr²⁺, and 87.69 kJ/mol for Fe/Fe²⁺ in molten FLiNaK

Redox Control

Cover gas control method
Metal control method
Dissolved salt control method
Refueling control method
Cathodic protection

Dissolved Salt control method

Invent the Future

Concentration ratio of Eu³⁺/Eu²⁺

 Randles-Sevcik equation is not valid for system containing both members (e.g., both U⁴⁺ and U³⁺)) of the redox couple:

$$i_{\rm p} = 0.4463 nF C_{\rm b} D^{1/2} \left(\frac{nFv}{RT}\right)^{1/2}$$

- Theory developed by Keightley et al. are adopted [1]:
- $\vec{\iota} = nF \left(C_{\rm b}^{\rm Red} D_{\rm Red}^{1/2} + C_{\rm b}^{\rm Ox} D_{\rm Ox}^{1/2} \right) \left(\frac{nFv}{RT} \right)^{1/2} \chi(\xi;\xi_i)$
- $\tilde{\iota} = nF \left(C_{\rm b}^{\rm Red} D_{\rm Red}^{1/2} + C_{\rm b}^{\rm Ox} D_{\rm Ox}^{1/2} \right) \left(\frac{nFv}{RT} \right)^{1/2} \left[\chi (2\xi_r \xi, \xi_i) \chi (2\xi_r \xi, \xi_r) \chi (-\xi, \xi_r) \right]$
- where $\chi(x, \alpha) = \frac{d^{1/2}}{dx^{1/2}} \frac{1}{2\sqrt{\pi}} \left[\tanh\left(\frac{x+\alpha}{2}\right) \tanh\left(\frac{\alpha}{2}\right) \right]; \ \xi = nF(E E_{1/2})/RT$

[1] A.M. Keightley, et al, J. Electroanal. Chem. 322 (1992) 25-54.

Nuclear Materials and Fuel Cycle center

Determined concentration ratio

		<i></i>			
Test #	$\frac{nF}{RT}\Delta E_{\rm p}$	$\frac{C_{\rm Eu^{2+}}}{C_{\rm Eu^{3+}}} \sqrt{\frac{D_{\rm Eu^{2+}}}{D_{\rm Eu^{3+}}}}$	$\frac{ i_p }{C^b} \sqrt{\frac{RT}{n^3 F^3 v D^b}}$	$\frac{nF}{RT}(E_{1/2}-E_p^c)$	$\frac{C_{\rm Eu^{3+}}}{C_{\rm Eu^{2+}}}$ †
_	2.236	0	0.4463	1.109	-
650°C #1	2.814	1.31	0.5415	1.697	1.21
650°C #2	3.102	2.13	0.5596	1.988	1.96
650°C #3	3.075	2.04	0.5581	1.959	1.88
700°C #1	2.855	1.42	0.5447	1.741	1.29
700°C #2	3.067	2.02	0.5578	1.953	1.83
700°C #3	3.119	2.18	0.5605	2.003	1.98
750°C #1	2.740	1.13	0.5356	1.623	1.08
750°C #2	2.674	0.98	0.5299	1.558	0.93
750°C #3	2.842	1.39	0.5439	1.729	1.33

Predicted coordinates of cyclic voltammetric peaks and the calculated concentration ratio.

[†]Calculated by the determined diffusion coefficient.

• Eu³⁺/Eu²⁺ ratio ≈ 2:1

Formal potential for Eu³⁺/Eu²⁺

•
$$E^* = E_{1/2} + \frac{RT}{nF} ln \left(\frac{D_{\text{Ox}}}{D_{\text{Red}}}\right)^{\frac{1}{2}}$$

Table Summary of formal standard potential from this work and references

Temperature (°C)	E [*] (V vs. F ₂ /F ⁻)	Salt	Total concentration of Eu in salt	Source
550	-3.94 or -3.82 [†]	FLiNaK	0.072 mol/kg	[1]
650	-3.836 ± 0.005	FLiNaK	0.048 mol/kg	This work
700	-3.787 ± 0.009	FLiNaK	0.048 mol/kg	This work
750	-3.732 ± 0.006	FLiNaK	0.048 mol/kg	This work
800	-3.53 ± 0.01	LiF-CaF ₂	0.100 mol/kg	[2]
820	-3.46 ± 0.01	LiF-CaF ₂	0.100 mol/kg	[2]
840	-3.40 ± 0.01	LiF-CaF ₂	0.100 mol/kg	[2]
870	-3.33 ± 0.01	LiF-CaF ₂	0.100 mol/kg	[2]

[1] W. Huang, et al. Electrochimi. Acta 147 (2014) 114-120.[2] L. Massot, et al. Electrochimi. Acta 54 (2009) 6361-6366

Redox potential window

- Solid line: metal dissolution at limit activity of 10⁻⁶
- Dotted line: reduction of oxidants. HF/H₂ =0.1: a mole ratio of HF/H₂ =0.1 at 1 atm total pressure
- Double solid line: redox potential calculated based on measured apparent potential.
- All potentials calculated based on ΔG° of fluorides at supercooled state except gaseous MoF₅, MoF₆, WF₆, and HF.

Nuclear Materials and Fuel Cycle center

Acceleration mechanisms of Cr Dissolution

Galvanic Corrosion

□ Direct reduction of Cr^{2+} Anode: Cr (alloy 1) \rightarrow Cr²⁺ + 2e⁻ Cathode (Ni): Cr²⁺ + 2e⁻ \rightarrow Cr (alloy 2)

Cathode (graphite):
$$\operatorname{Cr}^{2+} + \frac{3}{7}\operatorname{C} + 2\operatorname{e}^{-} \rightarrow \frac{1}{7}\operatorname{Cr}_{7}\operatorname{C}_{3}$$

Disproportionation reaction of Cr²⁺

$$3Cr^{2+} \rightarrow 2Cr^{3+} + Cr$$

 $3Cr^{2+} + \frac{3}{7}C \rightarrow 2Cr^{3+} + \frac{1}{7}Cr_7C_3$

Schematic of the direct reduction of the corrosion products on the cathode during galvanic corrosion. Ox represents the residual oxidants.

Salt Purification Method

Bi-Li Extractor

Sacrificial Electrode

(a) Bi+Li sacrificial anode

(b) Carbon sacrificial anode

Nuclear Materials and Fuel Cycle center

Available Fundamental data in Liquid

Cycle

Rare	Solid in	$\ln X_s = A - (B/T)$		Temperature	Reference	Rare	$\ln \gamma = A - (B/T)$		Temperature	Reference
earth metals	equilibrium with the	Α	В	range (K) (T _{min} , T _{max})		earth metals	Α	В	range (K) (T _{min} , T _{max})	
Y	YBi	0.8549	6195	588-1000	(Schweitzer and Weeks,	Y	-2.1049 0.8291	16,502 20,063	673–773 773–1023	(Kurata et al., 1996) (Kober et al., 1971a)
-	YBi	-2.8783	5941	648-948	1961b) ^a (Kober et al. 1971a)	La	1.9437	25,494	673-953	(Gschneidner and Calderwood, 1989a: Kober et al., 1968)
Ia	LaBia	2,1359	5366	548-933	(Schweitzer and Weeks		3.8249	-26,750	653-823	(Castrillejo et al., 2007)
	Labiz	2.1000			1961b)		3.2836	-26,437 -26,646	850–1100	(Yamana et al., 2001)
	LaBi ₂ LaBi ₂	5.8391 3.9875	8044 6705	648-948 548-948	(Kober et al., 1968) Overall fitting ^a	6	3.1083	-26,332	653-1100	Overall fitting ^a
Ce	CeBi ₂	2.4958	5804	573-723	(Schweitzer and Weeks,	Ce	4.6751 2.8145	-26,254 -25,235	773–923 673–773	(Kober et al., 1971b) (Kurata et al., 1996)
	CoDi	4 4072	6079		1961b) (Pleasance 1050		3.7046 5.5280	-26,089 -27,155	653-823	(Castrillejo et al., 2007) (Yamana et al., 2001)
	CeBI ₂	4.4073	6978		(Pleasance, 1959 —1960)		2.3606	-25,612 -26,067	735–937 653–937	(Dong et al., 2008a) Overall fitting ^a
	CeBi ₂ CeBi ₂	2.9748 2.7353	6289 6046	648-948 573-948	(Kober et al., 1971b) Overall fitting ^a	Pr	6.2425	-27,315	673-823	(Castrillejo et al., 2005a, 2007)
Pr	PrBia	0.4704	4502	548-623	(Schweitzer and Weeks		2.8386 6.6995	-24,994 -27,496	673–773	(Kurata et al., 1996) (Kober et al., 1985)
					1961b; Weeks, 1971)		7.6137	-28,554	672 972	(Lebedev, 1993) Overall fitting ^a
	PrBi ₂	3.3100	6287	623-723	(Schweitzer and Weeks, 1961b)	Nd	5.1335	-26,470	073-825	(Yamana et al., 2001:
Nd	NdBi ₂	2.2366	5873	573-773	(Schweitzer and Weeks,	Sm	4 0293	_27 111		Lebedev, 1993) (Kurata et al. 1996: Lebedev
	NdBia	2 2212	6287	572_023	1961b) (Smith 1972a)		2.4520	20,000		et al., 1975)
Sm	SmBia	5.5815	7492	573-773	(Schweitzer and Weeks	Eu	3.4520	-20,002		(Kurata et al., 1996; Dyblinn et al., 1985)
5111	5111012	5.0721	7452	515 115	1961b)	Gd	3.1689	-23,060	775-1055	(Sheng et al., 2001a)
Eu Ho	EuBi ₂ HoBi	6.0346 -0.65	6847 1818	598-823 673-873	(Smith, 1972b) (Antonchenko et al.,		3.7226	-24,326 -24,163	850-1100	(Lebedev, 1993)
					2009)		2.8386 1.2268	-22,697 -20,724	673-773	(Kober et al., 1983) (Kurata et al., 1996)
Er	ErBi	2.7927	7054	775–975	(Petrashkevich et al.,	_	3.0776	-22,994	673-1100	Overall fitting ^a
	ErBi	1.0378	5509	890-1090	(Yamshchikov et al.,	Tb	4.6295	-24,035	850-1100	(Yamana et al., 2001)
	FrBi	1 91 5 3	6281	775-1090	1982) Overall fitting ^a	Dy	3.3305 2.3099	-23,310 -21,811	850–1100 850–1101	(Yamana et al., 2001) (Sheng et al., 2002) ^a
	VbBia	4.6154	5527	553-673	(Weeks 1965 1971)	Er	3.9391	-21,946	850-1100	(Yamana et al., 2001)
arlü	Unknown	0.9790	6587	623-773	(Weeks, 1965, 1971)		-3.7677	-15,082	773-973	(Gschneidner and Calderwood, 1989a)

More fundamental data development based on phase diagram model

Bi-Ce

Fundamental data of Fission products in liquid Bi-Enthalpy of mixing

Bi-Ce

Nuclear Materials and Fuel Cycle center

Activity coefficient of Fission products in

Cycle center

Purification model for Using Bi-Li

Nuclear Materials and Fuel Cycle center

E-pO²⁻ diagram development

Chloride Salt Chemistry

Nd, Gd, and La for high concentration up to 9wt% in KCI-LiCI

Gd³⁺

Nd²⁺

