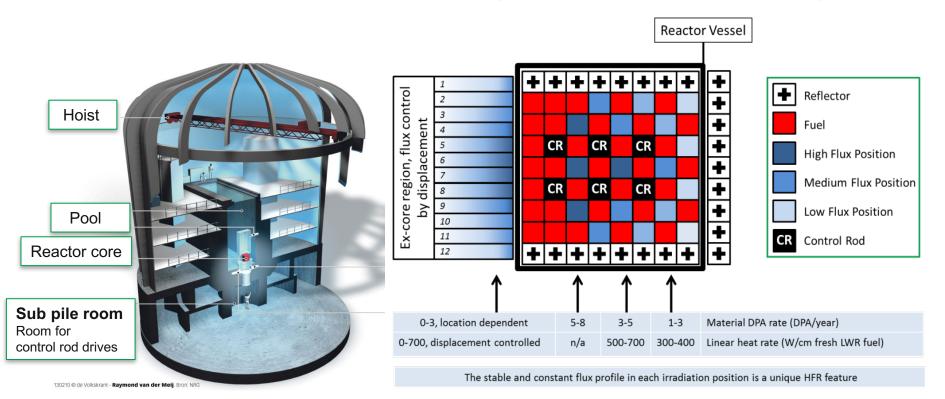

NC DUTCH MOLTEN SALT IRRADIATION PROGRAM

ORNL Molten Salt Workshop

Ralph Hania, Dennis Boomstra, Lucas Pool 3-4 October 2017



3

IRRADIATIONS IN THE HFR PETTEN

The High Flux Reactor in Petten is a 45 MW_{th} tank-in-pool reactor used for material research and isotope production (~275 full power days per year)

NRG'S MOLTEN SALT PROGRAM

Collaboration between NRG, JRC and TU Delft (soon also CVR Rez, FU Berlin)

Complementary competences

Molten Salt Technology fits well within R&D goals

- Improving safety
- Reducing use of resources
- Contributing to CO₂-free energy market

Program Objectives

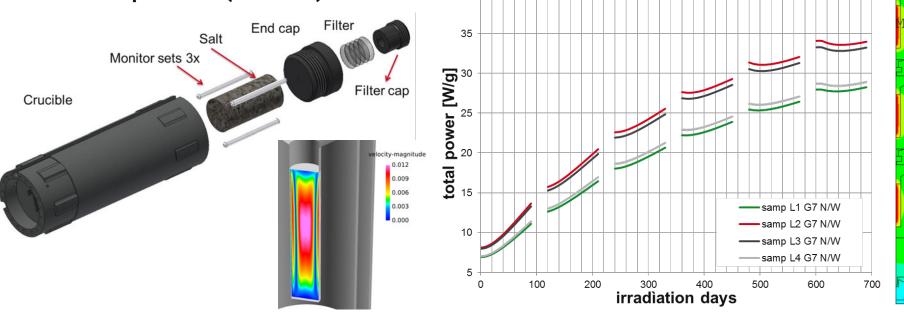
- 1. Obtain operational experience
- 2. Confirm FP stability in the salt
- 3. Investigate FP management methods
- 4. Develop in-pile metal/graphite corrosion rig
- 5. Waste route for spent molten salt fuel
- 6. Experimental MS loop for the HFR Petten

4

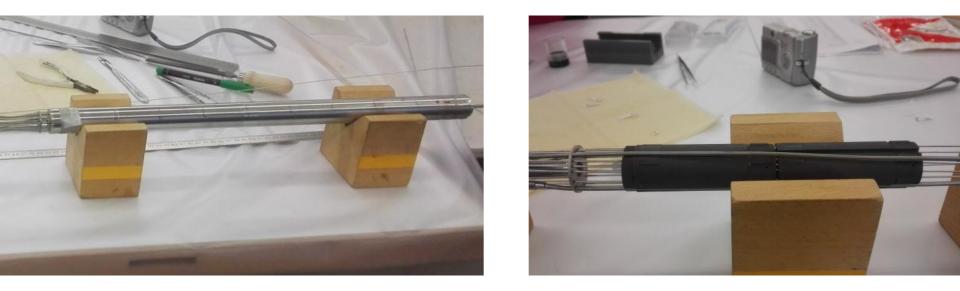
5

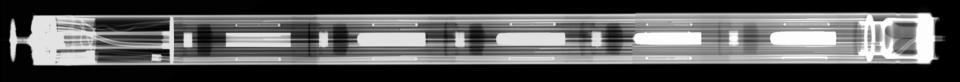
TENTATIVE IRRADIATION SCHEDULE

ltem	Goal	Target date
SALIENT-01	fission product (FP) behavior	2017
SAGA	room temperature gamma irradiation / radiolysis	2018
SALIENT-03	in-pile alloy corrosion / FP behavior	2019
SALIENT-04	in-pile helium bubbling	2020
LUMOS loop	flowing salt experimental facility	


- SALIENT capsule irradiations in standard in-core HFR facilities
- SAGA facility in HFR spent fuel pool
- LUMOS loop in HFR pool (adjacent to core wall)

SALIENT-01 DESIGN


A stack of open crucibles is irradiated in a double containment:


- Salt composition: 78LiF-22ThF₄
- Single result on cover gas composition for multiple crucibles
- Fuel power rises during irradiation due to production of U-233
- Gas composition between containments is adjusted to maintain a fixed crucible temperature (~600 °C)

SALIENT-01 ASSEMBLY

CURRENT STATUS

- Start of irradiation: August 10
- First cycle completed according specifications
 - 31 FPD
 - Temperatures on target
- Average crucible temperatures:
 - 585 °C (L1, L4)
 - 620 °C (L2, L3)

700 650 Tem perature °C 600 550 temperature (C) 750 700 500-650 600 550 450-100 200 300 400 0 Time (hours)

• Max. # cycles: 18

POST-IRRADIATION EXAMINATIONS

Calibrated burn-up analysis

- Sample compositions

Neutron radiography of the sample holders

- Experiment overview, integrity after irradiation

Gamma spectrometry

- Indication of the spread of gamma-emitting species within sample holder

Puncture of the sample holder and gas analysis by mass spectrometry

- Fission gas release from samples through natural convection (Xe, Kr, He)

Electron microscopy / WDS:

- FP distribution over salt, metal filter, graphite wall
- Size distribution of metallic species
- Surface states of graphite, metallic species

Knudsen cell effusion:

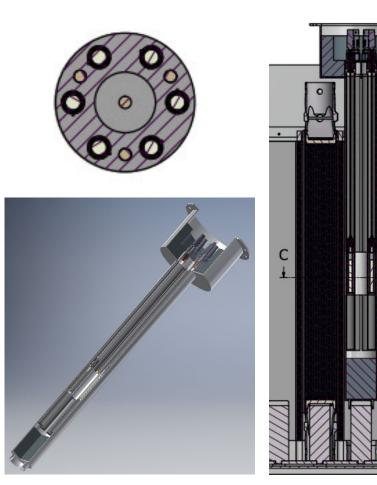
Determine salt stability, temperature at which FP species become volatile, Cs release

WASTE STRATEGY

- Conversion of salt to recognizable, acceptable chemical forms:
 - Oxide high level waste
 - Cemented intermediate level waste
 - Fluoride intermediate level waste (CaF₂ or fluorapatite)
- Route: aqueous processing
 - Can be performed at NRG hot cells with relatively little infrastructure changes
 - No complicated gas streams
 - Limited spreading of dust
- Preliminary lab results:
 - Dissolution in nitric acid and removal of bulk lithium
 - Removal of the fluoride by metathesis in KOH
 - Precipitation of the fluoride using calcium (CaF₂)
 - Calcination of hydroxides to oxides
 - Cementation of remaining liquid waste

SALIENT-03 - CONCEPT

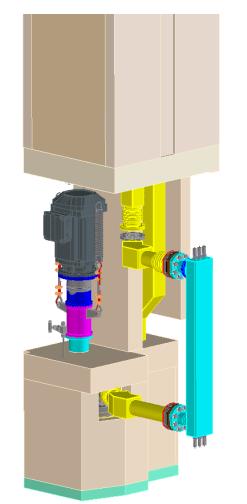
- A second capsule irradiation, but using Alloy N (or similar) crucibles
- Focus on in-pile corrosion → salt buffering (UF₄:UF₃) and electric heaters needed
 - Crucible corrosion from electron microscopy
 - Possibly: small samples of the crucible material for weight change measurements
- Materials:
 - Russian-developed formulation HN80MTY [Ignatiev2013 small batch produced by COMTES FHT in Czech Republ
 - Other (modified) Alloy N types requested for direct comparison



• Possibly: SiC

SAGA GAMMA IRRADIATION FACILITY

- HFR Spent fuel used as gamma source (30-70 kGy/h)
- ~45 °C base irradiation (solid salt samples)
- Possibility for out-of-pool electric heating to 150 °C
 → recombination kinetics
- Samples provided bij CVR Rez and JRC Karlsruhe



LUMOS LOOP CONCEPT DESIGN

In-pool loop positioned directly next to HFR core wall

Main parameters:

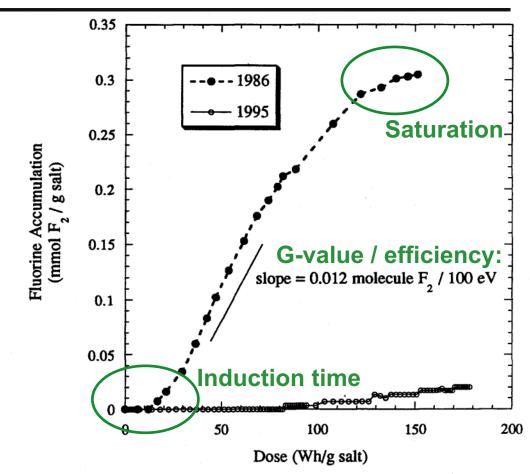
- Actinide bearing FLIBE salt (~20 L)
- Alloy N first containment
- Power: 125 kW (initial)
- Power density: 100-180 W/cc
- Flow rate: ≤3 m/s
- ∆T: ≤100 °C
- 5-6 operational years targeted

ACKNOWLEDGEMENTS

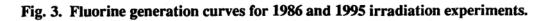
<u>I. Bobeldijk</u> A.J. de Koning S. de Groot E. de Visser-Tynova J.D. Bruin A. Booij

<u>O. Benes</u> P. Soucek M. Naji R.J.M. Konings E. d'Agata

<u>E. Capelli</u> J.L. Kloosterman A.L. Smith D. Bykov



Ministry of Economic Affairs of the Netherlands Goods labeled with to European and national export authorization when exported fran EU DuC (European Dual-use Codification) not equal to 'N' are subject om the EU and may be subject to national export authorization when exported to another EU country as well. Even without an EU DuC, or with EU DuC 'N', authorization may be required due to the final destination and purpose for which the goods are to be used. No rights may be derived from the specified EU DuC or absence of an EU DuC.



RADIOLYSIS

- Radiolysis is the cleavage of chemical bonds by radiation (in the current context: alpha, beta and gamma radiation)
- From halide salts the halide gases are produced (F₂ for fluorides)

Radiolysis in cooled
 down irradiated fuel salt

