Molten Salt Reactor Workshop 2017 Key Technology and Safety Issues for MSRs October 3 - 4, 2017

Natural Circulation Salt Heat Transfer

X. Sun, H.C. Lin, and S. Zhang

Department of Nuclear Engineering and Radiological Sciences University of Michigan

Session 7: Support for Salt Technologies

U.S. Department of Energy

Prandtl Number of Different Fluids

Natural/Forced Convection Heat Transfer Coefficient Correlations

Natural	Correlation	Geometry	Working	Pr range	Ra or Re	Ref.
Convection			fluid		range	
(NC)/Forced						
Convection						
(FC)						
NC	\sqrt{Nu}	Vertical plate	Sodium,	$0.004 \le \Pr \le 300$	$Ra \le 10^{12}$	[1]
	= 0.825		mercury,			
	0.387Ra ^{1/6}		air, water,			
	$+\frac{1}{5}$		oil			
	$\left[1 + \left(\frac{0.437}{Pr}\right)^{9/10}\right]^{4}$					
NC	$Nu = 0.54 Ra^{1/4}$	Horizontal plate,	Air	Pr = 0.7	$10^5 \le \text{Ra}$	[2]
		hot surface			$\leq 2 \times 10^7$	
		facing up				
NC	$Nu = 0.27 Ra^{1/4}$	Horizontal plate,	Air	Pr = 0.7	3×10 ⁵	
		hot surface			≤ Ra	
		facing down			$\leq 10^{10}$	
NC	$Nu = 0.474 Ra^{0.25} Pr^{0.047}$	Horizontal	Air, water,	$0.7 \le \Pr \le 3090$	3×10^{2}	[3]
		cylinder	silicone		≤ Ra	
			oils		$\leq 2 \times 10^7$	

Natural/Forced Convection HTC Correlations (Cont'd)

Natural	Correlation	Geometry	Working	Pr range	Ra or Re	Ref.
Convection			fluid		range	
(NC)/Forced						
Convection						
(FC)						
NC	Nu	Spheres	air, water, oil	$\Pr \ge 0.7$	$Ra \le 10^{11}$	[4]
	$0.589 \text{Ra}^{1/4}$					
	$= 2 + \frac{1}{\left[1 + \left(\frac{0.469}{Pr}\right)^{9/16}\right]^{4/9}}$					
FC	Nu	Pipe	air, water, oil	$0.7 \le \Pr$	$\text{Re} \ge 10^4$	[5]
	$= 0.027 \mathrm{Re}^{0.8} \mathrm{Pr}^{1/3} (\mu/\mu_s)^{0.14}$			≤ 16700		
FC	$1/2 - 1/2 (D)^{1/3}$	Pipe	air, water, oil	$0.7 \leq \Pr$	Re	[6]
	$Nu = 1.86 \text{Re}^{1/3} \text{Pr}^{1/3} \left(\frac{1}{L}\right)$			≤ 16700	≤ 2300	
	$(\mu/\mu_s)^{0.14}$					
FC	Nu	Pipe	air, water, oil	$0.7 \le \Pr \le 3$	3500	[7]
	$= 0.116 (\text{Re}^{2/3})$				\leq Re	
	(-125) Pr ^{1/3} $(\mu/\mu_s)^{0.14}$				≤ 1.2	
					$ \times 10^4$	

Natural/Forced Convection HTC Correlations (Cont'd)

Natural Convection (NC)/Forced Convection (FC)	Correlation	Geometry	Working fluid	Pr range	Ra or Re range	Ref.
FC	Nu = $0.023 \text{Re}^{0.8} \text{Pr}^n$ n = 0.4 if the fluid is heated n = 0.3 if the fluid is cooled	Pipe	air, water, oil	$0.7 \le \Pr \le 100$	$\text{Re} \ge 10^4$	[8]
FC	Nu = 2 + $(0.4 \text{Re}^{0.5}$ + $0.06 \text{Re}^{2/3}) \text{Pr}^{0.4}$	Sphere	air, water, oil	$0.7 \le \Pr \le 380$	$\text{Re} \le 7.6 \times 10^4$	[9]
FC	$Nu = 0.023 Re^{0.8} Pr^{1/3}$	Pipe	air, water, oil	$0.7 \le \Pr \le 100$	$\text{Re} \ge 10^4$	[10]

Comparison of Colburn Correlation with Salt Forced Circulation Experiments

Comparison with Salt Forced Circulation Experiments

Thermal Expansion Coefficient for Different Fluids

- FLiBe
- FLiNaK
- KF-ZrF₄
- KCI-MgCl₂
- H₂O (1 atm)

$$\Delta p = \left(\rho_{_{0}}\beta\Delta T\right)g\Delta h$$

Review of Natural/Forced Circulation Loops for MSRs/FHRs

Organization	NC/FC	Experiment	Objective	Material	Working fluid	Max	at max	Max	Ref.
		Modeling				working	temp.	power	
						temp.	(K⁻¹)	(kW)	
		-				(°C)			
Oak Ridge	NC	Experiment	Preparation for operation of the MSRE	Hastelloy N	LiF-BeF ₂ -ZrF ₄ -UF ₄ ,	784		30,000	[11]
National				Single loop					
Laboratory,					LiF-BeF ₂ -ZrF ₄	670		8.8	
USA	NC	Experiment	a) Determine if the experimental	Nickel	FLiNaK	700	0.00032	0.5	[12]
		Fluent	configuration provides sufficient salt	crucible					[13]
			velocity for collection of corrosion data;						
			b) Quantify natural circulation salt						
			velocities using a laser Doppler						
			velocimeter;						
	FC	Experiment	a) Develop a nonintrusive, inductive	Inconel				200	1
			heating technique	600 single					
			b) Measure heat transfer characteristics	loop					
The Ohio	NC	Experiment	Examine the couplings among the	SS 304	Water	76.5	0.00061	2	[14]
State		Relap5 MOD 4.0	natural circulation/convection loops and	coupled					[15]
University			provide experience for high-temperature	loops					
(University			DRACS loop design						
of	NC	Experiment	Investigate DRACS performance under	SS 316	FLiNaK	722	0.00032	70	1
Michigan),			steady-state and transient conditions,	coupled					
USA			including startup, pump trip test w/o IHX	loops					

Review of Natural/Forced Circulation Loops for MSRs/FHRs (Cont'd)

Organization	FC/NC	Experiment Modeling	Objective	Material	Working fluid	Max working temp. (°C)	at max temp. (K ⁻¹)	Max power (kW)	Ref.
University of California, Berkeley, USA	NC/FC	Experiment Relap5-3D modeling	Provide experimental validation data for system-level thermal hydraulic codes; Serve as an advanced reactor test bed;	Stainless steel/copper	Dowtherm A	120	0.00075	10	[16] [17]
University of New Mexico, USA	NC/FC	Experiment	System code validation; Heat exchanger testing	Stainless steel single loop	Dowtherm A			20	[18]
University of Wisconsin,	NC	Experiment Fluent	Research in natural circulation stability, salt freezing, etc.		FLiBe	800	0.00027		[19]
USA	FC	Experiment	Identify salt corrosion and heat transfer issues	SS 316 Single loop	KCI-MgCl ₂	600	0.00029	4	[20]
US Industry	NC/FC	Experiment	Gaining operation experience with salts, corrosion, component testing, instrumentation, etc.		Salts				
Ulsan National Institute of Science and Technology, Korea	NC	Experiment MARS code modeling	Understand the thermal-hydraulic characteristics of molten salts using simulants	SS 304 Single loop	Dowtherm RP	80	0.00071	0.3	[21]

Review of Natural/Forced Circulation Loops for MSR/FHR (Cont'd)

Organization	NC/FC	Experiment	Objective	Material	Working fluid	Max	at max	Max	Ref.
		Modeling				working	temp.	power	
						temp.	(K ⁻¹)	(kW)	
						(°C)			
Shanghai	NC	Experiment	Gather experience on design and	SS 316	KNO ₃ -NaNO ₂ -	450	0.00075		[22]
Institute of			validation of passive decay heat removal	Single loop	NaNO ₃				
Applied			system for FHRs						
Physics,	FC	Experiment	Validate system design; Develop	Hastelloy	FLiNaK	650	0.00032	150	
China			principle prototypes of molten salt	C276					
			pump, valves, HX, etc.	Single loop					
Beijing	NC	Experiment	Investigate natural circulation heat	SS 316	Ca(NO ₃) ₂ - KNO ₃ -	250		0.3	[23]
University of			transfer of molten salt in a single energy	tank	NaNO ₃ -LiNO ₃				
Technology,			storage tank						
China									
Bhabha	NC	Experiment	Investigate thermal hydraulics,	Inconel 625	KNO ₃ -NaNO ₃ -	580	0.0006	2	[24]
Atomic		In-house	instrument development, and material	Single loop	LiNO ₃				
Research		developed	related issues relevant to high-						
Centre, India		code	temperature reactor, such as MSBR						
		LeBENC							
	NC	Experiment	Experiments:	Hastelloy N	LiF-ThF ₄	750	0.00049	1	[25]
		OpenFOAM	a) Steady-state at different power levels;	Single loop					
			b) Startup transient;						
			c) Loss of heat sink;						
			d) Heater trip;						
			d) Step change in heater power.						

Review of Natural/Forced Circulation Loops for MSR/FHR (Cont'd)

Organization	NC/FC	Experiment Modeling	Objective	Material	Working fluid	Max working temp. (°C)	at max temp. (K ⁻¹)	Max power (kW)	Ref.
EU project SAMOFAR	FC	Experiment	Preparation for MSFR FFFFER: Forced Fluoride Flow for Experimental Research		FLiNaK	700	0.00032		[26] [27]
	FC	Experiment	Study the solidification phenomena of a molten salt						
Czech Republic	FC	Experiment	Experimental program in MSR physics and corrosion flow loop		FLiBe				[28]

Bhabha Atomic Research Centre's NC Experiments

• Startup

⁽A.K. Srivastava, et al., 2016)

Heat Transfer Correlations (HTC) in RELAP5

- Define the geometry of heat structure
- For single phase liquid, RELAP5 calculate three heat transfer coefficients
 - find the maximum heat transfer coefficient
 - $h = max(h_{laminar}, h_{turbulent}, h_{natural})$

User defined geometries	Laminar	Turbulent	Natural
Standard		Dittus-Boelter	Churchill-Chu or McAdams
Horizontal annuli, flow in plate		Dittus-Boelter	McAdams
and single tube		Dittus-Docher	WeAdams
Parallel flow in vertical bundle		Dittus-Boelter-	Churchill Chu ar Maddama
with in-line and staggered rods	Nu	Inayatov	Churchill-Chu of McAdams
Crossflow in vertical bundle with	= 4.36	Dittus-Boelter	Churchill Chu ar Maddama
in-line and staggered rods		Inayatov-Shah	Churchill-Chu or McAdams
Parallel flow and crossflow in horizontal bundle with in-line and staggered rods		Dittus-Boelter	Churchill-Chu

HTC for Flow in Circular Tubes in RELAP5 (Cont'd)

- Laminar forced convection (Sallers)
 - -Nu = 4.36
- Turbulent forced convection (Dittus-Boelter)
 - $Nu = 0.023 Re^{0.8} Pr^{0.4}$
- Natural convection (Churchill-Chu)

$$- Nu = \left\{ 0.825 + \frac{0.387Ra^{\frac{1}{6}}}{\left[1 + \left(\frac{0.492}{Pr}\right)^{\frac{9}{16}}\right]^{\frac{8}{27}}} \right\}^{2}$$
$$- Ra = Gr \cdot \Pr \qquad Gr = \frac{\rho^{2}g\beta(T_{w} - T_{b})L^{3}}{\mu^{2}}$$

Natural convection (McAdams)

$$- Nu = 0.27 Ra^{0.25}$$

HTC in TRACE

• For single-phase liquid, also take maximum values among laminar and turbulent forced convection and natural convection (NC).

- $h = max(h_{laminar}, h_{turbulent}, h_{laminar NC}, h_{turbulent NC})$

- Geometries
 - Tube
 - Rod bundle
 - Helical Coil
 - Cross Flow

HTC for Flow in Circular Tube in TRACE

• Turbulent forced convection (Gnielinski)

$$- Nu = \frac{(f/2)(Re-1000)Pr}{1+12.7(f/2)^{0.5}(Pr^{2/3}-1)} \qquad f = [1.58ln(Re) - 3.28]^{-2}$$

Laminar forced convection (Sallers)

- Nu = 4.36

- Laminar NC
 - $Nu = 0.59Ra^{0.25}$

$$- Ra = Gr \cdot Pr$$

$$-Gr = \frac{\rho^2 g \beta (T_w - T_b) L^3}{\mu^2}$$

Turbulent NC

 $- Nu = 0.1Ra^{1/3}$

Natural Circulation Heat Transfer in Fluted Tube Heat Exchangers

Helically-Coiled Fluted Tube Heat Exchangers

Low-temperature DRACS Test Facility (LTDF)

• LTDF Design

	Primary Water (10 bar)	Secondary Water (1 bar)	Air
T_{hot} (°C)	76.5	65.2	40
T_{cold} (°C)	63.7	34.8	20
ΔT (°C)	12.8	30.4	20
<i>m</i> (kg/s)	0.038	0.016	0.102
Loop Height (m)	1.71	0.42	2.1
Pipe ID (cm)	3.7	2.0	35.6

Benchmark RELAP5 Simulation

- DRACS Startup Transient
 - 2 kW from the heater
 - Natural circulation established

DHX tube-side inlet and outlet temperatures

Mass flow rates of three loops

Benchmark RELAP5 Simulation (Cont'd)

- Pump Trip Transient
 - Pump tripped when transient initiated
 - After pump trip, primary flow reversed and natural circulation flow established

DHX tube-side inlet and outlet temperature

Mass flow rates of three loops

High-temperature DRACS Facility (HTDF)

High-temperature DRACS Facility (Cont'd)

Summary of HTDF Design

• Nominal power: 10 kW

	Primary Fluid (FLiNaK, 0.1 MPa)	Secondary Fluid (KF and ZrF ₄ , 0.1 MPa)	Air
T _{hot} (°C)	722	666	110
T _{cold} (°C)	678	590	40
\dot{m} (kg/s)	0.120	0.127	0.142
Loop Height (m)	1.14	1.08	3.43

- Core: Simulated by 7 cartridge heaters (Max.: 70 kW)
- DHX: Shell-and-tube heat exchanger
 - Shell ID: 211 mm; 80 tubes (5/8") with length: 325 mm; 4 baffles
 - SS 316 as the structure material
- NDHX: Plain-tube heat exchanger
 - 30 tubes (5/8") in 2 rows; tube length: 438 mm
 - SS 316 as the structure material

High-temperature Fluoride Salt Test Facility

- High-temperature Fluoride Salt Test Facility
 - Natural/Forced circulation

Loop height

1.15

1.22

Summary

- Heat transfer coefficient for salt forced convection: Existing correlations/models seem to have reasonable accuracy
- Natural circulation salt heat transfer
 - Strongly geometry dependent
 - Thermal radiation effect
 - Experiments for salt natural convection heat transfer
 - Experiments for salt natural circulation

References

[1] S.W. Churchill and H. Chu, "Correlating Equations for Laminar and Turbulent Free Convection from A Vertical Plate," *International Journal of Heat and Mass Transfer*, **18**, pp. 1323-1329 (1975).

[2] W.H. McAdams, "Heat Transmission, Third Edition, Chapter 7," McGraw-Hill Book Company, New York.

[3] R. Fand, E. Morris, and M. Lum, "Natural Convection Heat Transfer from Horizontal Cylinders to Air, Water, and Silicone Oils for

Rayleigh Numbers between 3×10^2 to 2×10^7 ," International Journal of Heat and Mass Transfer, 20, pp. 1173-1184 (1977).

[4] S.W. Churchill, "Free Convection Around Immersed Bodies," Heat Exchanger Design Handbook, Section 2.5.7, Begell House, New York (2002).

[5] F. Incropera, D. Dewitt, "Fundamentals of Heat and Mass Transfer (4th ed)," New York: Wiley (2000).

[6] http://www.pathways.cu.edu.eg/ec/Text-PDF/Part%20B-9.pdf.

[7] H. Hausen, "Neue Gleichungen fur die Wameiibertragung bei Freier oder Erzwungerner Stromung," Allg. Warmetchn., **9**, pp. 75–79 (1959).

[8] T.L. Bergman and A.S. Lavine, "Fundamentals of Heat and Mass Transfer, Seventh Edition," John Wiley & Sons (2011).

[9] S. Whitaker, "Forced Convection Heat Transfer Correlations for Flow in Pipes Past Flat Plates, Single Cylinder, Single Sphere, and

for Flow in Packed Beds and Tube Bundles," AIChE Journal, 18, pp.361-371 (1972).

[10] http://www.pathways.cu.edu.eg/ec/Text-PDF/Part%20B-9.pdf

[11] H.C. Savage, E. Compere, J.M. baker, and E.G. Bahlmann, "Operation of Molten-Salt Convection Loops in the ORR," ORNL-TM-1960, Oak Ridge National Laboratory (1967).

[12] G. Yoder, D. Heatherly, D. Williams, etc., "Liquid Fluoride Salt Experiment using a Small Natural Circulation Cell," ORNL/TM-2014/56, Oak Ridge National Laboratory (2014).

[13] D. Felde, E. Ontiveros, D. Fugate, D. Holcomb, K. Robb, and G. Yoder, "Liquid Salt Test Loop Operations," Second Molten Salt Reactor Workshop, October 4-5 (2016).

[14] H. Lin, "Relap5 Model Benchmark for Thermal Performance of DRACS Test Facilities," Master thesis, The Ohio State University (2016).

References (Cont'd)

[15] Q. Lv, "Design, Testing and Modeling of the Direct Reactor Auxiliary Cooling System for FHRs," PhD thesis, The Ohio State University (2016).

[16] N. Zweibaum, R. Scarlat, and P. Perterson, "Verification and Validation of a Single-Phase Natural Circulation Loop Model in Relap5-3D," 2013 Relap5 International Users Group Seminar, September 12-13 (2013).

[17] N. Zweibaum, J. Bickel, Z. Guo, etc., "UC Berkeley Compact Integral Effects Test (CIET): Facility Design, Test Program, and Initial Validation Studies," Workshop on Molten Salt Reactor Technologies, October 15-16 (2015).

[19] J. Hughes, A. Wallace, M. Liu, and E. Blandford, "Heat Transfer Research in Support of FHRs at the University of New Mexico, October 16 (2015).

[18] http://fhr.nuc.berkeley.edu/wp-content/uploads/2016/08/16-002_THWG-White-Paper_FINAL-4.pdf

[20] P. Sabharwall, M. Ebner, M. Sohal, etc., "Molten Salts for High Temperature Reactors: University of Wisconsin Molten Salt Corrosion and Flow Loop Experiments – Issues Identified and Path Forward," INL/EXT-10-18090 (2010).

[21] Y. Shin, S. Seo, I. Kim, I. Bang, "Natural Circulatio with Dowtherm RP and its MARS Code Implementation for Molten Salt-cooled Reactors," *International Journal of Energy Research*, **40**, pp. 1122-1133 (2016).

[22] Y. Fu, "SINAP Loop Operations – Summary of Experience to Data," 2016 ORNL MSR Workshop, October (2016).

[23] L. Wei, Y. Qiang, etc., "Natural Convection Heat Transfer of Molten Salt in A Single Energy Storage Tank," *Science China Technological Sciences*, **59**, pp. 1244-1251 (2016).

[24] A. Srivastava, J. Kudariyawar, A. Borgohain, S. Jana, N. Maheshwari, and P. Vijayan, "Experimental and Theoretical Studies on the Natural Circulation Behavior of Molten Salt Loop," *Applied Thermal Engineering*, **98**, pp. 513-521 (2016).

[25] A. Srivastava, R. Chouhan, A. Borgohain, etc., "An Experimental and Numerical Study to Support Development of Molten Salt Breeder Reactor," Journal of Nuclear Engineering and Radiation Science, 3, pp. 031007-1 – 031007-8 (2017).

[26] https://indico.math.cnrs.fr/event/601/contribution/9/material/slides/0.pdf

[27] M. Tano, P. Rubiolo, and O. Doche, "Progress in Modeling Solidification in Molten Salt Coolants," Modelling and Simulation in Materials Science and Engineering, 25, pp. 1-29 (2016).

[28] https://public.ornl.gov/conferences/msr2015/pdf/09-Uhlir%20-%20Czech%20exp%20program%20in%20MSR%20physics.pdf