

Status and Direction of Molten Salt Loops at ORNL

Kevin Robb

Acknowledge: Seth Baird, Nolan Goth, Trevor Howard, Ethan Kappes, Jordan Massengale, Ricardo Muse, Thien Nguyen

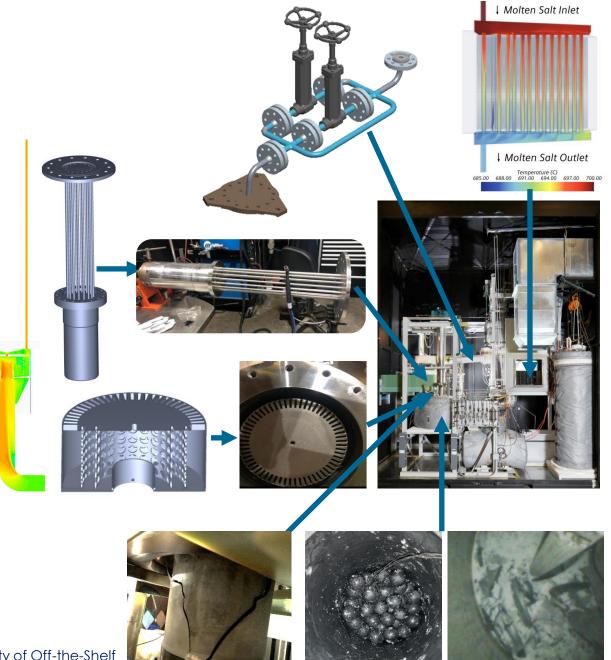
MSR Workshop 2021

Oct. 13, 2021

ORNL is managed by UT-Battelle LLC for the US Department of Energy

Liquid Salt Test Loop (LSTL) Overview

- Versatile high-temp. forced-flow fluoride salt test facility
 - One of few operable salt loops in the U.S., with salt repurification capability, with relevant power and flow
 - FLiNaK provides relevant salt environment for RD&D

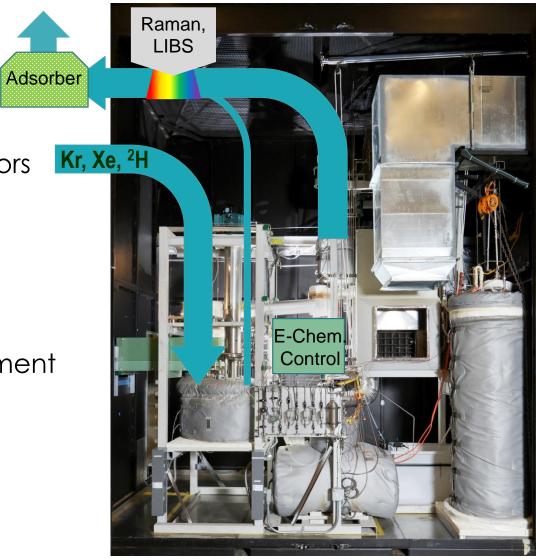

Salt	NaF-KF-LiF
Operating Temp.	700°C
Flow rate	≤4.5 kg/s
Primary Material	Inconel 600
Loop salt volume	80 liters
Power (main heater)	200 kW induction ~20 kW trace
Primary piping ID	2.67 cm (1.05 in.)
Initial operation	Summer 2016
Flow rate Primary Material Loop salt volume Power (main heater) Primary piping ID	 ≤4.5 kg/s Inconel 600 80 liters 200 kW induction ~20 kW trace 2.67 cm (1.05 in.)

Liquid Salt Test Loop (LSTL) Highlighted Efforts

- Series of efforts over the last couple years
 - Repurified salt through hydrofluorination
 - Restarted loop
 - SiC section cracked on cool down
 - Disassembly and cleanout of SiC pieces
 - Designed new heated section and filter
 - Fabricate and install new section
- Surveyed valve options, created test plan
- Examined heat ex. freezing susceptibility

-T. K. Howard, David Holcomb, Kevin Robb, "Assessment on the Practicality of Off-the-Shelf Valves for Use in Molten Salt," Proc. NURETH-18, Portland, OR, August 18-23, 2019. -Goth, N., Delgado, M., Howard, T., & Robb, K., (2020). Molten Salt Air-Cooled Heat Exchanger Fluid Dynamics. Trans. of the ANS - Volume 123. doi:10.13182/t123-33521

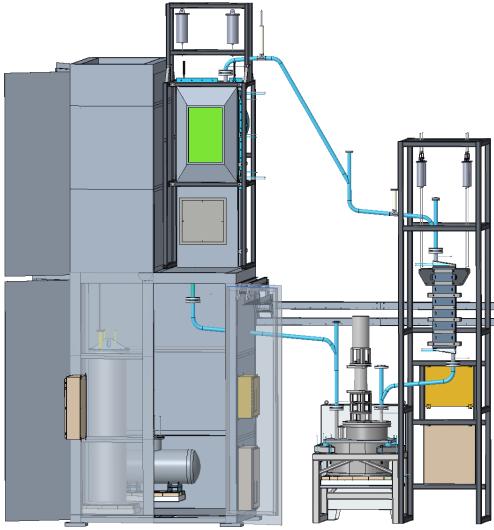
3


Liquid Salt Test Loop (LSTL)

Future: Multi-year testbed studying specie transport and sensors

- Progressive injection and tracking of species
 - Gases: Kr, Xe, ²H
 - Iodine, Cerium, etc.
- Parallel development and demonstration of sensors from collaborators
 - Raman (PNNL), LIBS (ORNL)
 - E-Chem monitoring and control (ANL)
 - Novel sensors from industry and universities
 - In situ corrosion sensors (ORNL)
- Collaborative design and testing of off-gas treatment
 - Noble gas (i.e. Xe) adsorbers
 - Aerosol capture

CAK RIDGE National Laboratory


• Provide validation data for specie transport phenomena models and integral predictions

Facility to Alleviate Salt Technology Risks (FASTR) Overview

- Relevant-scale facility to de-risk molten salt technology for Gen 3 Concentrating Solar Power (CSP)
 - ~2x larger than LSTL
 - Under development

Salt	NaCl-KCl-MgCl ₂
Operating Temp.	725°C
Flow rate	3-7 kg/s
Primary Material	C-276
Loop salt volume	120 liters
Power (main heater)	350 kW main ~50 kW trace
Primary piping ID	5.25 cm (2.07 in.)
Planned operation	Fall 2021

CAK RIDGE

Robb, Kevin R., et al. *Facility to Alleviate Salt Technology Risks (FASTR): Preliminary Design Report with Failure Modes and Effects Analysis.* No. ORNL/TM-2019/1370, 2019.

Facility to Alleviate Salt Technology Risks (FASTR) Highlighted Efforts

210 kg Batch Purification

Flow Loop Construction

Open facility for Cl salt technology RD&D

Ren, Weiju, and Kevin Robb. "Alloy Selection and C-276 Code Design Value Extension for Advanced Molten Salt Technology Test Facilities Experimentation." *Pressure Vessels and Piping Conference*. Vol. 83860. ASME, 2020.

Thank you

Kevin Robb, robbkr@ornl.gov

Research financial support provided by the U.S. Department of Energy through the Office of Nuclear Energy (for LSTL) and Office of Energy Efficiency and Renewable Energy (for FASTR)

