Ting-Leung (Sam) Sham

Nuclear Science & Technology Directorate Fellow

tingleung.sham@inl.gov

Development of Test Articles for Surrogate Materials Surveillance

2021 Virtual Molten Salt Reactor (MSR) Workshop October 12-13, 2021

Acknowledgment

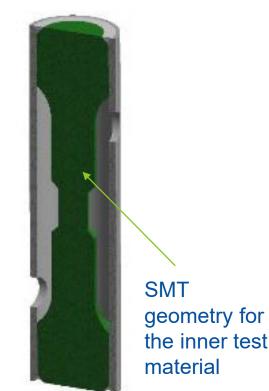
- This research was sponsored by the US Department of Energy (DOE), under Contract No. DE-AC07-05ID14517 with Idaho National Laboratory, managed and operated by Battelle Energy Alliance, and under Contract No. DE-AC02-06CH11357 with Argonne National Laboratory, managed and operated by UChicago Argonne LLC
- Programmatic direction was provided by the Office of Nuclear Reactor Deployment of the DOE Office of Nuclear Energy
- Technical direction was provided by Patricia Paviet of the Pacific Northwest National Laboratory, National Technical Director of the Molten Salt Reactors Campaign, Advanced Reactor Technologies (ART) Program

Collaborators

- Argonne National Laboratory
 - Mark Messner, Yoichi Momozaki, Ed Boron
- Idaho National Laboratory
 - Michael McMurtrey, Nedim Cinbiz
- Subject Matter Expert
 - Robert Jetter

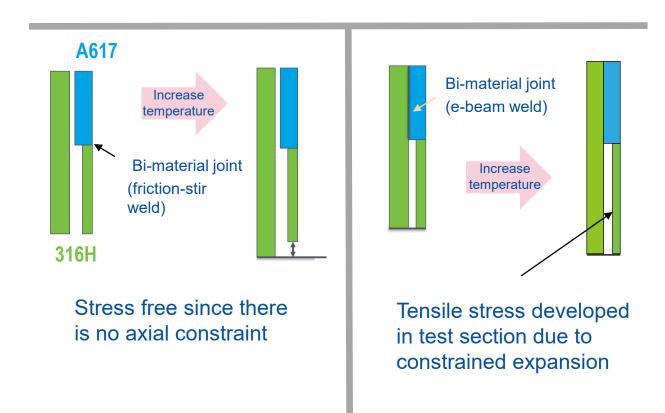
Materials Degradation During Advanced Reactor Operations

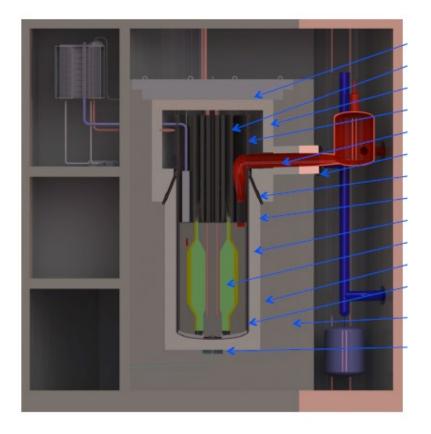
- Information on materials degradations during advanced reactor operations is limited
- Effects of materials degradations during reactor operations are synergistic, involving:
 - Irradiation, corrosion, elevated temperature exposure and stress (creep-fatigue loading)
- Establishment of surrogate materials surveillance program for the management of materials degradations would be an important pathway in support of the timely licensing of advanced reactors

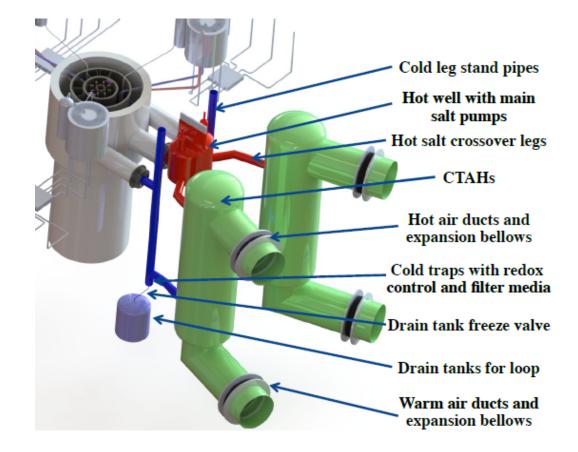


Surrogate Materials Surveillance Test Articles Development

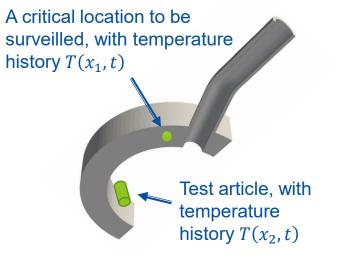
- Motivated by the SMT specimen that can introduce realistic structure-like mechanical response
- Combined with the basic idea of using thermal expansion mismatch within a test article to generate "load" passively
- Led to an initial concept for a passive surveillance test article
- Difficult to find the right kind of thermal expansion mismatch to induce tensile "load" in the test material

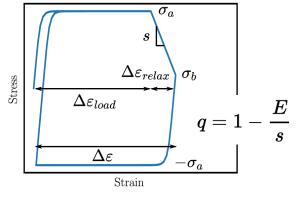

Cross section of axisymmetric test article


SMT specimen (Yanli Wang, ORNL)


Basic Concept: Passively Loaded by Mismatch in Thermal Expansion Coefficients

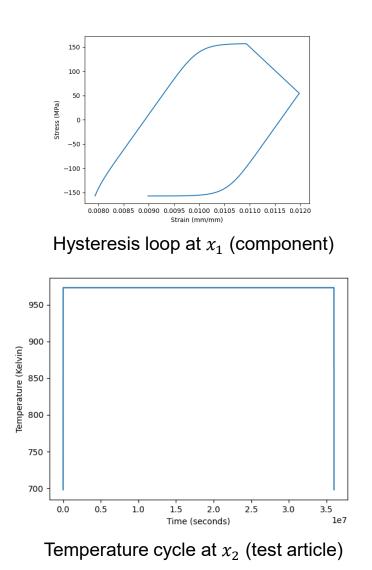
- Provides creep-fatigue loading with configurable strain range and elastic follow up factor
- Does not require any penetration of the reactor coolant boundary, except, potentially, for monitoring sensors
- Relies on large CTE mismatch, challenging for stainless steel
- Fabricated a test article with 316H (test material) driven by A617 (driver material)
 - Conducted a thermal cycling Proof-of-Concept testing to demonstrate the viability of the approach


How to Surveil the Structural Integrity of a Critical Location in a Component Using a Test Article?



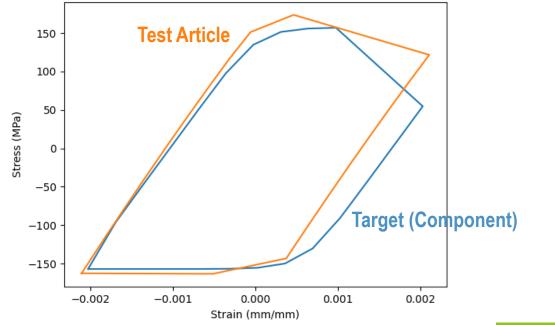
Mk1 PB-FHR, (L) Reactor vessel and cavity, (R) Heat transport system Ref: Mark-1 PB-FHR Technical Description, UCBTH-14-002, 2014

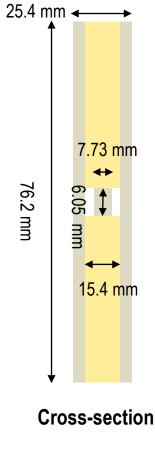
Structural Integrity Surveillance



Stabilized Hysteresis Loop

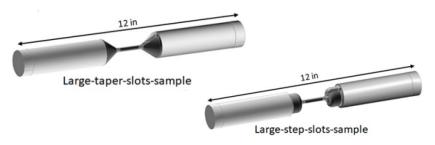
- Thermal hydraulic analysis of plant operating transients would lead to development of temperature distribution and history in the coolant and the structural components
- Thermal cycling $T(x_1, t)$ will generate stabilized cyclic stresses $\sigma_{ij}(x_1, t)$ and strains $\varepsilon_{ij}(x_1, t)$ at critical location x_1
- In the effective stress and effective strain space, the stress-strain hysteresis loop can be characterized by a number of parameters
- Question: Can the geometry of the surveillance test article be sized to reproduce the key characteristics of the hysteresis loop of the component at x_1 , due to the thermal cycling of the surveillance test article at location x_2
- Conclusion: Possible to capture two key parameters: (i) strain range $\Delta \varepsilon$, and (ii) elastic follow-up factor q, which measures the structural characteristic

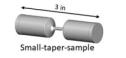

Developed a Test Article Sizing App



Provide geometric constraints:

- Overall test article OD: 1 inches = 25.4 mm
- Overall test article length: 3 inches = 76.2 mm


Results: best specimen design and resulting stress/strain hysteresis



Developed Two Families of Passively Loaded Test Articles

- Two "families" of test articles with different objectives
 - Large test articles (12" long):
 - Develop basic fabrication technology
 - Instrument and test to assess test article design/acceptance
 procedures
 - Small test articles (3" long):
 - Demonstrate that a reactor-scale test articles can be fabricated using the same techniques
 - Assess joint strength by thermal testing

→3 in
A
Small-step-sample

Small test articles ready for final assembly

Large test articles ready for final assembly

Test Articles Fabrication Completed – Both Types Follow the Same Basic Process

1. Start with A617 and 316H cylindrical stock

4. Join casing and inner specimen with electron beam welds

2. Stir-friction weld together 2 pieces of A617 to 1 piece of 316H

ഗ

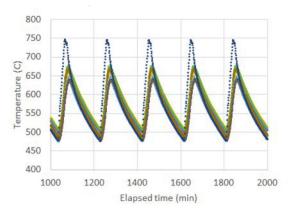
0

A617

5. Completed test articles

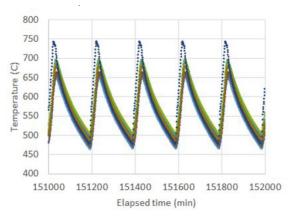
 Machine inner specimen from welded rod, machine casing from larger diameter cylindrical stock

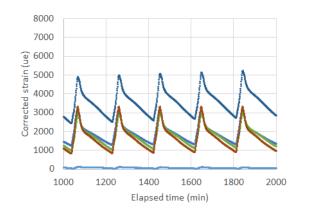
Long-Term Thermal Cycling Test Initiated


- Both families of test articles completed and in furnace for long-term cycling test
 - Large test articles:
 - Instrumented with thermocouples and strain gauges
 - Small test articles:
 - Ensure realistically-sized test articles for in-reactor deployment can be fabricated
 - Cycle to failure to make sure failure occurs in the gauge region (weld strength)
- Thermal cycling test started, will continue until test article fails

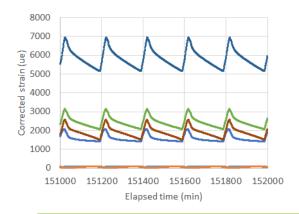
Test articles (small and large) in box furnace

Results from Ongoing Thermal Cycling Tests


Box furnace temperature

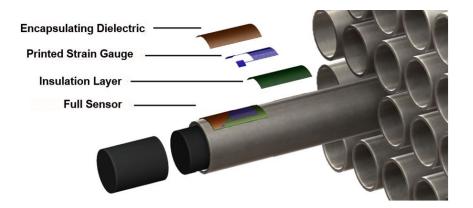


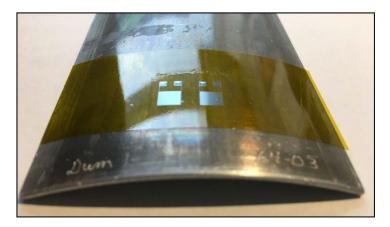
Temperature histories: (L) at the start of the test, (R) around 2021-9-7


Temperature cycling period \approx 3.3 hours

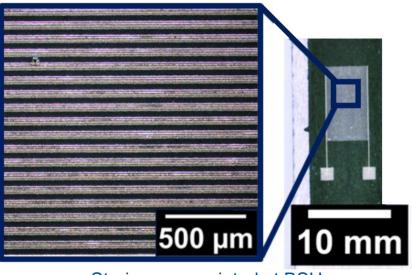
Test articles temperatures

Mechanical strain histories: (L) at the start of the test, (R) around 2021-9-7




- Continue thermal cycling tests till failure
- Complete fabrication scoping task on replacing Alloy 617 by Mo-TZM as driver material
- Develop protocol for controlled temperature cycling
- Explore feasibility of further reducing the test article size from 3-inch long to 1.5 or even 1-in long for practical deployment
- Explore strain measurement methods for small-sized test article to provide validation data

Strain Measurement


- Strain measurement on small test articles is challenging
 - Small size (0.1" diameter or less gauge section)
 - Curved surface
 - High temperatures
- INL, in conjunction with Boise State University (BSU), have been developing printed strain gauges under the Advanced Sensors and Instrumentation (ASI) Program that would address these issues and allow real-time strain measurement
- Will leverage this ASI development for the ART-MSR work

Printed strain gauge design (ASI)

Advanced Manufactured thin film strain gauge on curved ATR fuel plate

Strain gauge printed at BSU

Parallel Effort by the Advanced Reactors Regulatory Development Program

- Produce a guidance document that will present regulatory options to leverage the materials surveillance technology being developed by the ART Program for Advanced Non-Light Water Reactor (ANLWR) industry stakeholders to review and endorse
- Example options:
 - Develop and implement a materials degradation management program that would provide early warnings on structural degradation and on impending structural failure of safety significant components
 - Develop a strategy for the ANLWR industry to balance and potentially reduce part of the upfront new materials data requirements from ongoing long-term materials testing

Thank You.