

Adaptive Control

Transatomic Power Corporation

October 5th, 2016

Reactivity Swing

"A well-designed core is one that has the absolute minimum reactivity swing," [1] as surplus implies that neutrons that could have otherwise contributed to fission and conversion are lost through external absorption and leakage.

[1] R. G. Cochran and N. Tsoulfanidis, "In-Core Fuel Management," in *The Nuclear Fuel Cycle: Analysis and Management*, La Grange Park, Illinois, American Nuclear Society, 1999, pp. 165-205.

The Effect of Salt Volume Fraction

Figure 3. Conversion ratio as a function of salt volume fraction and ²³⁵U enrichment for a representative TAP pin cell.

A New Take on Control Rods

Figure 4. A conceptual depiction of a reactor vessel design that uses moveable or additional moderator rods for reactivity control.

Adaptive Reactivity Control

- Short Term
 - Moveable moderator rods
 - Similar to control rods in an LWR
- Long Term
 - Insert more moderated assemblies
 - Similar time interval to refueling and maintenance in an LWR

Simulating Operation

Overview

- Software
 - Serpent 2
- Fuel Cycle
 - 5% Enriched ²³⁵U Initial load & feed
- Modeling Considerations
 - Performed at the "assembly" level (5 by 5 rod array)
 - Fission product removal & fuel addition
 - Rod insertion

Figure 5. A visualization of the change in salt volume fraction as a function of burnup for the representative TAP operational scheme simulated in SERPENT 2.

Results: Spectrum

Beginning of life (BOL)

• A high initial fissile load (5%) can achieve criticality on the hardened spectrum

End of life (EOL)

• More thermal neutrons allow for low levels of enrichment to remain critical

BOL ---- EOL

Figure 6. The development of the neutron spectrum with increasing burnup, with BOL and EOL signifying the spectrums at the beginning and end of life respectively

Results: Conversion Ratio

Beginning of Life (BOL)

• Hardened spectrum allows for significant conversion of fertile material

End of Life (EOL)

• Softening of the spectrum keeps the system critical, but plays a detrimental role in the progression of conversion ratio.

Figure 7. Conversion ratio as a function of a burnup for the representative TAP operational scheme simulated in SERPENT 2.

Results: Criticality

- Bulk rod insertion
 - A rod addition in the model represents rod insertion in every assembly in the core
 - Not modeling short term control
- Leakage limit reduction coincides with the spectrum evolution

---- Leakage Limit

Figure 8. The infinite multiplication factor as a function of burnup for the representative TAP operational scheme simulated in SERPENT 2.

Waste vs Burnup

• Fundamental Equations*

•
$$\dot{W}_P = \frac{m_F}{CL}$$

• $Bu = \frac{P \cdot CL}{m_T}$
• $m_F = \frac{P \cdot CL \cdot \overline{M}}{m_T}$

•
$$m_C = \frac{I - C E M}{\overline{E}_F \cdot N_A}$$

• Derived Formulation*

•
$$\dot{W}_P = \frac{P}{Bu} - \frac{P \cdot \overline{M}}{\overline{E}_F \cdot N_A}$$

Figure 9. Actinide waste production rate as a function of burnup. Please note the rates are normalized to a thermal power level of 2.27 GWth.

* \dot{W}_P = Waste production rate, m_F = Remaining mass at the end of cycle, m_T = Total actinide mass used over the course of cycle, m_c = mass consumed over the course of cycle, \overline{M} = Average molar mass of fissioning nuclei, \overline{E}_F = Average energy per fission, N_A = Avogadro's number 9

Summary

- Novel method of adaptive reactivity control
 - Moveable moderator rods
- Increased performance even without modeling short term control
 - Conventional 5% fuel cycle
 - Burnup > 80 GWd/MTHM
 - 50% Waste reduction compared to current LWR's

Figure 10. A comparison of the burnup (blue) and waste production (red) of an LWR and the TAP MSR, operating on the conventional 5% fuel cycle.

Questions?

Transatomic Power Corporation October 5th, 2016

Additional: Parameters

- Neutron Population
 - 300 active cycles
 - 100 inactive cycles
 - 10000 neutrons per cycle
- Cross Section Data
 - ENDF-VII.1, 900 K
- Depletion Time Step*
 - $\Delta t = \Delta t_I \cdot 5^{n-1}$
 - $\Delta t_I = 0.1 \ days$
 - $\Delta t_{Max} = 182.5 \ days$

- Boundary Conditions
 - Reflective
- Conversion Ratio*

•
$$CR = \frac{(^{238}U + ^{240}Pu)(n,\gamma)}{(^{235}U + ^{239}Pu + ^{241}Pu)(n,\gamma+n,f)}$$

Additional: Isotopic Evolution

- Decreased conversion over the course of life cause the slope of the total fissile evolution to increase with time.
- Significant reduction in ²³⁸U capture at the EOL compared to BOL leads to the sharp drop in ²³⁹Pu.

Figure 11. Illustrating the effect of conversion ratio, the above data shows the development of the primary fissile isotopes with increasing burnup.

Additional: Convergence

Additional: Literature

Table 1.5 Effective energy released per thermal fission for the three primaryfissile isotopes

Isotope	Thermal Fission Energy Release (MeV)
²³⁵ U	192.9
²³⁹ Pu	198.5
²⁴¹ Pu	200.3

Table 1.6 Average neutrons released per thermal fission for the three primary fissile isotopes

Isotope	Neutrons Released per Thermal Fission
²³⁵ U	2.42
²³⁹ Pu	2.87
²⁴¹ Pu	2.93

Figure 14. Fission and capture cross-sections for ²³⁵U, data taken from ENDF-VII.1

Additional: Literature

