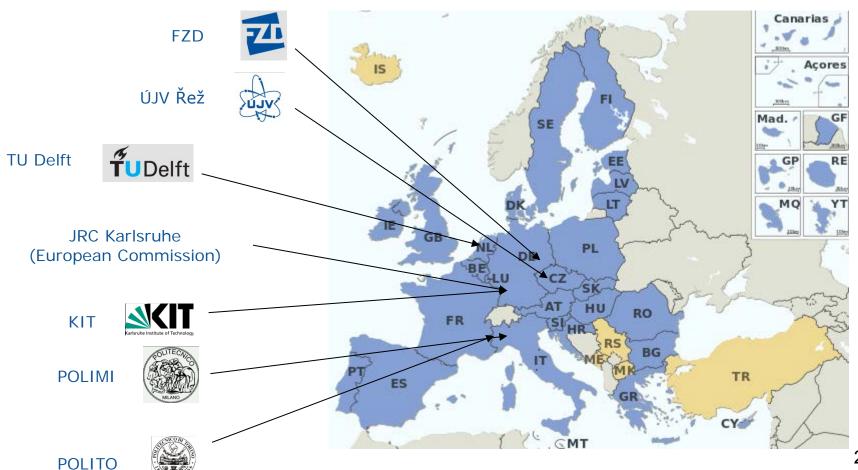


# MSR R&D program in EU:

O. Beneš, J.-L. Kloosterman


European Commission, Joint Research Centre Karlsruhe, Germany

### **MSR in EU**



#### EU - 28 member states

Nuclear activities in EU: EURATOM (27 MS) + FRANCE (CEA, CNRS, Uni.)



#### MSR activities at JRC



- MSR activities at JRC since 2002

permanent member of GIF MSR PSSC (EURATOM representative)
 (MoU signature in 2010)

JRC role is to: support member states (NL, FR, CZ, IT) safety assessment of MSR no reactor development

- Strongly supported by framework programmes of European Union

Successful MSR EU projects of the past:

MOST (3 years - 2002-2005)

ALISIA (1 year - 2007)

EVOL (3 years - 2010-2013)

SAMOFAR (4 years – Aug. 2015 – Aug. 2019)

# **SAMOFAR project**





# Ultimate aim: Develop nuclear energy which is truly inherently safe and produces no nuclear waste other than fission products

4 years (2015-2019) - 5 M€ (3.5M€ EC funding)

Parallel project submitted in Russia Cooperation with China, Russia, USA, Mexico

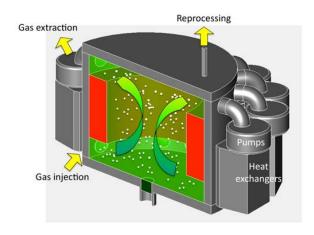
- Deliver the experimental proof of the unique safety features of the MSFR
- Provide a safety assessment of the MSFR (nuclear reactor and chemical plant)
- Update the conceptual design of the MSFR
- Deliver a roadmap plus actions towards validation of the technology and demonstration of the reactor

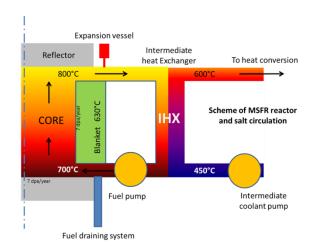


# **SAMOFAR project**



WP1 – Integral safety assessment


WP2 – Safety related data


WP3 – Experimental validation

WP4 - Accident analysis

WP5 – Safety evaluation of chemical plant

WP6 – Dissemination and Exploitation





# **SAMOFAR** project



| Number | Organisation name                                                                             | Country The Netherlands |  |  |
|--------|-----------------------------------------------------------------------------------------------|-------------------------|--|--|
| 1      | Technische Universiteit Delft (TU Delft)                                                      |                         |  |  |
| 2      | Centre National de la Recherche Scientifique (CNRS)                                           | France                  |  |  |
| 3      | JRC - Joint Research Centre- European Commission (JRC)                                        | Germany                 |  |  |
| 4      | Consorzio Interuniversitario Nazionale per la Ricerca Tecnologica Nucleare (CIRTEN)           | Italy                   |  |  |
| 5      | Institut de Radioprotection et de Sûreté Nucléaire (IRSN)                                     | France                  |  |  |
| 6      | Centro de Investigaciony de Estudios Avanzados del Instituto Politecnico Nacional (CINVESTAV) | Mexico                  |  |  |
| 7      | AREVA NP SAS (AREVA)                                                                          | France                  |  |  |
| 8      | Commissariat a l'Energie Atomique et aux Energies Alternatives (CEA)                          | France                  |  |  |
| 9      | Electricité de France S.A. (EDF)                                                              | France                  |  |  |
| 10     | Paul Scherrer Institute (PSI)                                                                 | Switzerland             |  |  |
| 11     | Karlsruher Institut für Technologie (KIT)                                                     | Germany                 |  |  |

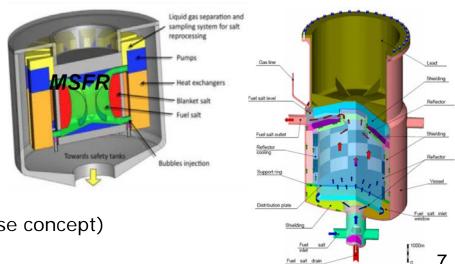
#### **JRC Karlsruhe**



#### **Uniqueness:**

JRC Karlsruhe is one of the very few facilities being able to measure high temperature properties of actinide containing fluoride salts.

This provides a significant support to other EU partners dealing with the design and safety assessments of MSR concepts.


- WP leader of SAMOFAR (experimental data)

#### Main concepts studied:

MSFR (EU reference concept)

MOSART (Russian concept)

MSBR (TMSR) (traditional ORNL and Chinese concept)



#### overview of MSR activities ITU



#### **Basic electrochemical studies**

of actinides and Ln in molten fluoride and chloride media

Synthesis and purification of **An and Ln halides** 

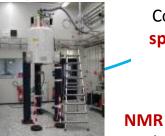




Demonstration of pyrochemical separation methods for irradiated materials






#### **High temperature properties**

of An halides and mixtures

- phase diagrams
- melting points
- vapour pressure
  - heat capacity



# RAMAN spectroscopy of molten salts

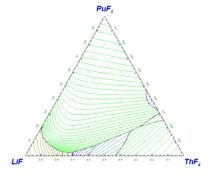


Combined electrochemistry – spectrometry (uv-vis, RAMAN, TRLF) of An chlorides (and fluorides)

**NMR** high temperature probe for **molten salts** 

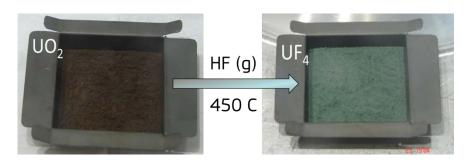


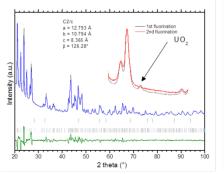


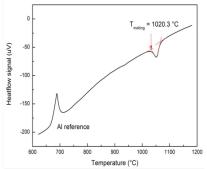

# 3 domains of MSR research at JRC-ITU



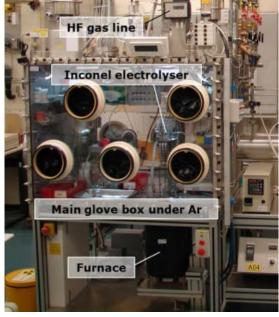
Fuel
synthesis/purification
+
Electrochemistry


**High T properties** 


Thermodynamic (CALPHAD) modelling




# **Synthesis & Purification**


- Argon GB dedicated to fluoride chemistry
- HF gas line + Inconel fluorination reactor (up to 1200°C)
- ThF<sub>4</sub> and UF<sub>4</sub> synthesised from ThO<sub>2</sub> and UO<sub>2</sub> with very high purity
- $UO_2 + HF(g) \rightarrow UF_4 + H_2O$
- XRD pure and m.p. pure (DSC)





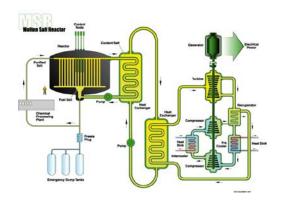








# Synthesis of 2 salts for SALIENT




# **MSR** properties



# For the MSR design:

- Neutronic properties
- Melting temperature
- Heat capacity
- Vapour pressure
- Actinide solubility
- Chemical stability to high T
- Density and Viscosity
- Thermal conductivity
- Stability to radiation



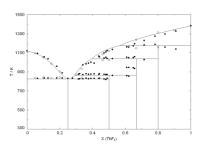
**Thermochemistry** 

**SAMOFAR** 

# **MSR** properties



In the last decade ITU has developed an expertise in determination of High temperature properties of An fluorides and mixtures

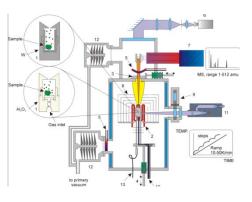

Phase diagrams

**Melting points** 

**Heat capacity** 

Solubility of An

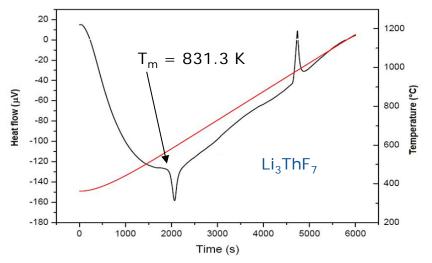
Drop and DSC calorimeters up to 1800 K



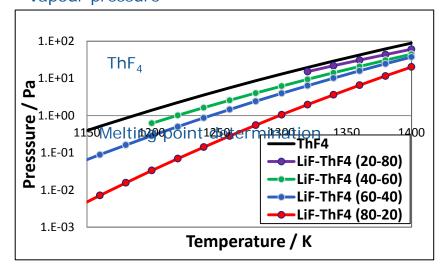



#### **Vapour pressure**

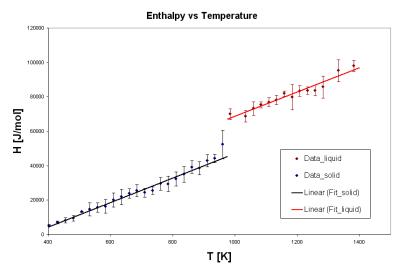
Knudsen cell with MS up to 2800 K



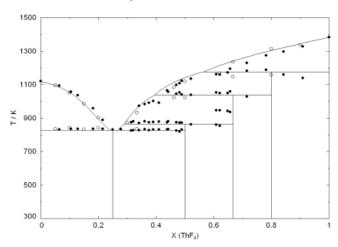




# **MSR** properties

# \*\*\*\* European Commission


#### Melting point determination




#### Vapour pressure

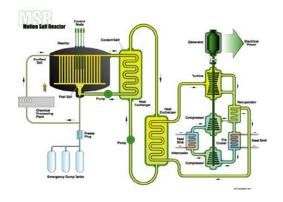


#### Heat capacity determination



#### Phase equilibrium data




# **Thermodynamics**



# For MSR design:

- Neutronic properties

- Melting temperature
- Heat capacity
- Vapour pressure
- Actinide solubility
- Chemical stability to high T
- Density and Viscosity
- Thermal conductivity
- Stability to radiation



**Thermochemistry** 

Thermodynamic modelling

(all properties linked to Gibbs energy)



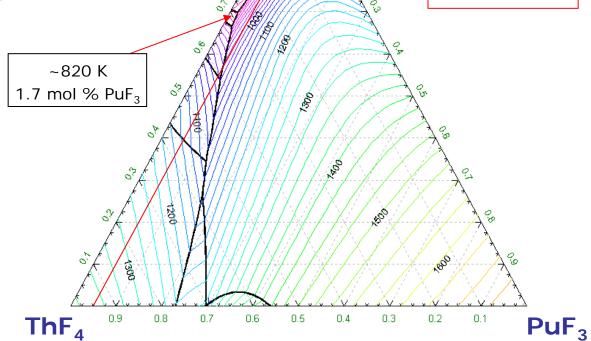
#### 1. Optimization of the MSFR concept

Selection criteria:

<u>Initially proposed fuel:</u>

 $T_{melting}$  ALARA principle


 $LiF-ThF_4$  eutectic (78-22 mol%) +  $PuF_3$  (5 mol%)


but ....

is this the lowest melting temperature???

x (PuF<sub>3</sub>) ≈ **5 mol**%

= 5 mol% PuF<sub>3</sub>





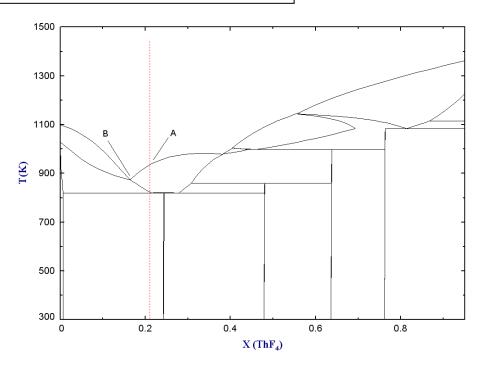
LiF



#### 1. Optimization of the MSFR concept

Reference system of the MSFR

 $\underline{\text{LiF-ThF}_4\text{-PuF}_3}$  (74-21-5 mol%) ... solvent is  $\underline{\text{LiF-ThF}_4}$  (78-22)

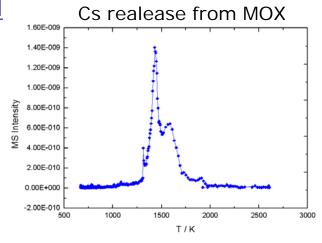

Point A

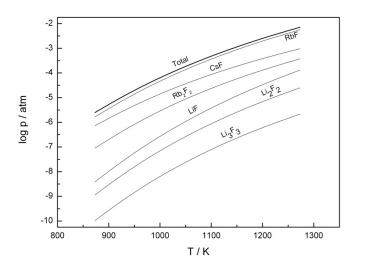
- liquidus point is 935 K (662 ° C)
- inlet temperature is 980 K (712 °C) (50K margin)

#### Point B

<u>LiF-ThF<sub>4</sub>-PuF<sub>3</sub></u> (78.6-16.4-5 mol%)


- liquidus point is **873 K** (600 ° C)
- inlet temperature is 923 K (650 ° C) (50K margin)




# 1. Fission product influence on MOSART fuel

Case of LiF-RbF-PuF<sub>3</sub> (43.9-54.8-1.3) fuel (alternative of MOSART fuel, m.p. 744 K)









## ITU Salt Database: (46 binary systems)

|                  | LiF | NaF | KF | RbF | CsF | BeF <sub>2</sub> | CaF <sub>2</sub> | LaF <sub>3</sub> | CeF <sub>3</sub> | ZrF <sub>4</sub> | ThF <sub>4</sub> | UF <sub>4</sub> | PuF <sub>3</sub> | UF <sub>3</sub> |
|------------------|-----|-----|----|-----|-----|------------------|------------------|------------------|------------------|------------------|------------------|-----------------|------------------|-----------------|
| LiF              |     | X   | X  | X   | X   | X                | X                | X                | X                | X                | X                | X               | X                | X               |
| NaF              |     |     | X  | X   | X   | X                | X                | X                |                  |                  | X                | X               | X                | X               |
| KF               |     |     |    | X   | X   |                  | X                | X                |                  |                  |                  |                 | X                |                 |
| RbF              |     |     |    |     | X   |                  |                  | X                |                  |                  |                  |                 | X                |                 |
| CsF              |     |     |    |     |     |                  |                  | X                |                  |                  |                  |                 | X                |                 |
| BeF <sub>2</sub> |     |     |    |     |     |                  |                  |                  |                  | X                | X                | X               | X                |                 |
| CaF <sub>2</sub> |     |     |    |     |     |                  |                  | X                |                  |                  | X                |                 |                  |                 |
| LaF <sub>3</sub> |     |     |    |     |     |                  |                  |                  |                  |                  |                  |                 | X                |                 |
| CeF <sub>3</sub> |     |     |    |     |     |                  |                  |                  |                  |                  | X                | X               |                  |                 |
| ZrF <sub>4</sub> |     |     |    |     |     |                  |                  |                  |                  |                  |                  |                 |                  |                 |
| ThF <sub>4</sub> |     |     |    |     |     |                  |                  |                  | ·                |                  |                  | X               | Х                |                 |
| UF <sub>4</sub>  |     |     |    |     |     |                  |                  |                  |                  |                  |                  |                 | Х                | X               |
| PuF <sub>3</sub> |     |     |    |     |     |                  |                  |                  |                  |                  | ·                |                 |                  |                 |
| UF <sub>3</sub>  |     |     |    |     |     |                  |                  |                  |                  |                  |                  |                 |                  |                 |

Fuel types one can fully describe:

Properties of fuel concepts such as MSFR, MSBR, MOSART can be optimized/predicted

Database most likely provided through bilateral contracts (non-disclosure)

## **Summary**



- Quite significant activities in MSR program in EU (Euratom+France signatories of GIF MoU)
- EU MSR reference concept MSFR
- MSR research driven by national and EU projects (currently running SAMOFAR)
- Several start-up companies in EU (Moltex, Copenhagen Atomics ...)
- International collaborations (out of EU) extremely important to support EU MSR program
- JRC Karlsruhe a world unique place to obtain experimental data on fuel salt systems