Progress of Materials R&D in TMSR Project

Ruobing Xie
Shanghai Institute of Applied Physics (SINAP)
Chinese Academy of Sciences (CAS)

Molten Salt Reactor Workshop 2016
Oak Ridge, Tennessee
October 4-5, 2016
Acknowledgement

The information provided for this presentation by my TMSR colleagues is greatly appreciated.

Xingtai ZHOU Ping HUAI
Hefei HUANG Yanlin LU
Zhoutong HE Juan HOU
Xiangxi YE Cun YU
Outline

- Overview of Thorium Molten Salt Reactor (TMSR) Project
- Materials R&D at SINAP
 - TMSR design and materials overview
 - Challenges and progress on alloy and graphite
 - Database construction
 - Basic science research in progress
- Summary
TMSR Reactor Development Plan

- Thorium Energy
- High Temperature \(\text{H}_2 \) Production
- Water-free Cooling
- Small Modular Design

High Temperature Fission Nuclear Energy

Strategy of TMSR R&D

- Long-term
- Mid-long
- Mid-term

Modified Open Fuel Cycle

Fully Closed Fuel Cycle
TMSR Reactor Development Plan

- Simulator TMSR-SF0
- 10 MW Test Reactor TMSR-SF1
- 2 MW Test Reactor TMSR-LF1 + Th Fuel Cycle Test
- 100 MW Demo Reactor TMSR-SF2
- 10 MW Test Reactor TMSR-LF2 + Th Fuel Cycle Demo

2015 2020 2025
Materials

<table>
<thead>
<tr>
<th>Component</th>
<th>Candidate Materials</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reactor Vessel</td>
<td>N10003</td>
</tr>
<tr>
<td>Reactor Vessel Support</td>
<td>SA533</td>
</tr>
<tr>
<td>Graphite structure</td>
<td>Nuclear Graphite NG-CT-10</td>
</tr>
<tr>
<td>Core barrel</td>
<td>N10003, 316ss</td>
</tr>
<tr>
<td>Control Rod System</td>
<td>The rod- N 10003; seal cover-SA-508-3; gears-35SiMn/37SiMnV; spring-50CrVA; Gear box-ZG0Cr18Ni9Ti</td>
</tr>
<tr>
<td>Pebble injection Mechanism</td>
<td>N10003, 316ss</td>
</tr>
<tr>
<td>Pebble defuel Mechanism</td>
<td>N10003, 316ss</td>
</tr>
</tbody>
</table>

Fuel

- TRISO/ThF4/UF4

Molten Salt

- FLiBe /FLiNaK
Materials R&D for TMSR face the challenges from manufacture process as well as the service environments.
Challenges to Alloy

Alloy N (UNS N10003) including Hastelloy N and GH3535 is still considered as the best candidate, while 316 is also under review.

- **Scientific challenges**
 - High temperature strength (>700 ºC)
 - Neutron irradiation resistance (He/Te embrittlement, swelling)
 - Corrosion control

- **Technological challenges**
 - Large scale component fabrication
 - Welding procedure development

- **Challenges relevant to code & standard & data**
 - Most of the codes or standards do not exist to support the TMSR/FHR design
 - Alloy N faces big gaps in performance data for the ASME code case application
Progress in Alloy - Manufacture Capability

Current fabrication capacity of Alloy N components

<table>
<thead>
<tr>
<th>Type of materials</th>
<th>China</th>
<th>USA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ingot</td>
<td>≤ 10 ton</td>
<td>≤ 3 ton</td>
</tr>
<tr>
<td>Plate</td>
<td>width ≤ 2200mm</td>
<td>width ≤ 1800mm</td>
</tr>
<tr>
<td>Rolled Ring</td>
<td>diameter ≤ 790mm</td>
<td>under development</td>
</tr>
<tr>
<td>Bar</td>
<td>diameter ≤ 240mm</td>
<td>diameter ≤ 240mm</td>
</tr>
<tr>
<td>Forging</td>
<td>≤ 1 ton</td>
<td>≤ 1 ton</td>
</tr>
<tr>
<td>Pipe</td>
<td>diameter ≤ 168.3mm</td>
<td>diameter ≤ 88.9mm</td>
</tr>
</tbody>
</table>

- Current fabrication ability of SINAP can fulfill the requirements of TMSR SF-1.
- The fabrication technology has come to a bottleneck, limiting the component scale.
Progress in Alloy – Mechanical Evaluation

<table>
<thead>
<tr>
<th>Property</th>
<th>Requirements in ASME 2015</th>
<th>Data Completeness</th>
<th>Current status</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elastic modulus</td>
<td>25-700°C, 50°C Interval</td>
<td>Complete</td>
<td>finished</td>
<td>ASME II, Haynes</td>
</tr>
<tr>
<td>Poisson's ratio</td>
<td>25-700°C, 50°C Interval</td>
<td>Incomplete</td>
<td>1 batch finished</td>
<td>ASME II ID</td>
</tr>
<tr>
<td>Density</td>
<td>25-700°C, 50°C Interval</td>
<td>Complete</td>
<td>finished</td>
<td>SINAP</td>
</tr>
<tr>
<td>Plastic modulus</td>
<td>25-700°C, 50°C Interval</td>
<td>Complete</td>
<td>finished</td>
<td>ASME II ID</td>
</tr>
<tr>
<td>Thermal conductivity</td>
<td>25-700°C, 50°C Interval</td>
<td>Complete</td>
<td>finished</td>
<td>ASME II ID</td>
</tr>
<tr>
<td>Linear expansion coefficient</td>
<td>25-700°C, 50°C Interval</td>
<td>Incomplete</td>
<td>Lack of data above 400°C, and 400-900°C data</td>
<td>ASME II, Haynes</td>
</tr>
<tr>
<td>Heat capacity</td>
<td>25-700°C, 50°C Interval</td>
<td>Complete</td>
<td>finished</td>
<td>ASME II ID</td>
</tr>
<tr>
<td>Base metal 50</td>
<td>25-700°C, 50°C Interval</td>
<td>Complete</td>
<td>finished</td>
<td>ASME II ID</td>
</tr>
<tr>
<td>Base metal 55</td>
<td>25-700°C, 50°C Interval</td>
<td>Complete</td>
<td>finished</td>
<td>ORNL</td>
</tr>
<tr>
<td>Base metal 30</td>
<td>450-700°C, 50°C Interval/ Up to 300000h</td>
<td>Incomplete</td>
<td>650°C Cup to 300000h ; 700°C Cup to 30000h</td>
<td>SINAP</td>
</tr>
<tr>
<td>Base metal 35</td>
<td>450-700°C, 50°C Interval/ Up to 300000h</td>
<td>Incomplete</td>
<td>650°C Cup to 300000h ; 700°C Cup to 30000h</td>
<td>SINAP</td>
</tr>
<tr>
<td>Weldment Smt</td>
<td>450-700°C, 50°C Interval/ Up to 300000h</td>
<td>Incomplete</td>
<td>650°C Cup to 300000h ; 700°C Cup to 30000h</td>
<td>SINAP</td>
</tr>
<tr>
<td>Weldment St</td>
<td>450-700°C, 50°C Interval/ Up to 300000h</td>
<td>Incomplete</td>
<td>650°C Cup to 300000h ; 700°C Cup to 30000h</td>
<td>SINAP</td>
</tr>
<tr>
<td>Weldment R</td>
<td>450-700°C, 50°C Interval/ Up to 300000h</td>
<td>Incomplete</td>
<td>650°C Cup to 300000h ; 700°C Cup to 30000h</td>
<td>SINAP</td>
</tr>
<tr>
<td>Bolt 50</td>
<td>25-700°C, 25°C Interval; Up to 300000h</td>
<td>Complete</td>
<td>finished</td>
<td>ASME II ID</td>
</tr>
<tr>
<td>Bolt Smt</td>
<td>450-700°C, 50°C Interval/ Up to 300000h</td>
<td>Incomplete</td>
<td>650°C Cup to 300000h ; 700°C Cup to 30000h</td>
<td>SINAP</td>
</tr>
<tr>
<td>Isochronous stress-strain curves</td>
<td>450-700°C, 50°C Interval/ Up to 300000h</td>
<td>Incomplete</td>
<td>650°C Cup to 300000h ; 700°C Cup to 30000h</td>
<td>SINAP</td>
</tr>
<tr>
<td>Designed fatigue strain curves</td>
<td>25°C, 600°C, 650°C, 700°C , 730°C ; Fatigue rupture cycles : 10⁸ ~ 10⁹</td>
<td>Incomplete</td>
<td>650°C Cup to 300000h ; Confidential curve , fatigue rupture cycles up to 10⁹</td>
<td>SINAP</td>
</tr>
<tr>
<td>Creep-fatigue envelope</td>
<td>No defined requirements</td>
<td>Incomplete</td>
<td>650°C, 1% strain</td>
<td>SINAP</td>
</tr>
<tr>
<td>Yield stress</td>
<td>25-700°C, 50°C Interval</td>
<td>Complete</td>
<td>finished</td>
<td>ASME II, SINAP</td>
</tr>
<tr>
<td>Ultimate tensile strength</td>
<td>25-700°C, 50°C Interval</td>
<td>Complete</td>
<td>finished</td>
<td>ASME II, SINAP</td>
</tr>
<tr>
<td>Yield strength reduction factor</td>
<td>650°C, 700°C, 1000°C, 10000h</td>
<td>Incomplete</td>
<td>650°C, 700°C Cup to 10000h</td>
<td>SINAP</td>
</tr>
<tr>
<td>Ultimate tensile strength</td>
<td>650°C, 700°C, 1000°C, 10000h</td>
<td>Incomplete</td>
<td>650°C, 700°C Cup to 10000h</td>
<td>SINAP</td>
</tr>
</tbody>
</table>

- Time independent data are nearly complete, except for Poisson's ratio and a few stress data
- Time dependent data are ~ 30% completed
Progress in Alloy – Irradiation Test

✓ Finish irradiation test on Hastelloy N @ T=650 °C, dose=2.5E19. PIE indicates that after irradiation the yield strength slightly increases, whereas the elongation keeps stable.

✓ Finish Irradiation test on Hastelloy N and GH3535 (base metal & weld metal) @ T=25 °C, dose=2.5E19 & 1E20

● High Dose (3-15 dpa) test to be conducted in 2018 @ PSI
3000 hrs static corrosion test suggests corrosion depth of Alloy N in FLiNaK less than 20 um

Comparison between the base metal and weld zone suggests that the welding process does not affect the corrosion degree of Alloy N in FLiNaK
Challenges to Graphite/Carbon Based Composite

Manufacture
- Manufacturing large block of ultrafine grain graphite is challenging.
- The fracture toughness and thermal conductivity need to be improved.
- The uniformity and reproducibility are critical to nuclear graphite.

Compatibility
- The infiltration/diffusion of molten salt need to be studied.
- Fission produce/tritium absorption in graphite affects the neutron economy.
- Impurities in salt could enhance the corrosion of graphite.

Irradiation
- The irradiation behaviors of ultrafine grain graphite could be different.
- The irradiation data collection is a time and money consuming effort.
- The molten salt and graphite interface could affect the irradiation behavior of graphite.

Design Code
- Design code is needed for commercializing TMSR.
- Fully understanding the behavior of graphite is essential for design code development.
Progress in Graphite – Manufacture & Salt Infiltration

1400×600×350mm

Tests on candidate graphite NG-CT-50

- Manufacture capability – size up to 1400 x 600 x 350 mm
- Smaller size compared to common commercial graphite
- FLiBe infiltration test done – low permeation for molten salt under reactor pressure
Progress in Graphite – Irradiation Test

- Irradiation Test @ T=650 °C, dose=5\times10^{20} to be done by June, 2017. PIE to be done by 2018.

<table>
<thead>
<tr>
<th>Test issues</th>
<th>NG-CT-50</th>
<th>NG-CT-10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal conductivity</td>
<td>24</td>
<td>16</td>
</tr>
<tr>
<td>Thermal expansion coefficient</td>
<td>24</td>
<td>16</td>
</tr>
<tr>
<td>Splitting tensile</td>
<td>32</td>
<td>16</td>
</tr>
<tr>
<td>Compressive strength</td>
<td>24</td>
<td>16</td>
</tr>
<tr>
<td>Bending strength</td>
<td>24</td>
<td>16</td>
</tr>
</tbody>
</table>

- Irradiation Test in MS @T=700 °C, dose=4\times10^{20} to be done by Dec. 2016. PIE to be done in 2017.
Material Database Construction

- Covers a wide range of materials for TMSR including alloys, graphite, ceramics and composites
- Source includes experimental data by TMSR, qualified data from other expert groups (ORNL etc.), and Journal Publication
- Full traceability from material property data to experimental data and reports
Basic Science Research in Progress

Material Structural Studies Using Synchrotron X-ray
- In situ observing load allocation in alloy
- Molten salt distribution in graphite and composite
- Element tracing in irradiated/corroded samples
- Radioactive material studies with dedicated beam line

Ion beam simulates neutron irradiation
- He embrittlement in Ni based alloy
- Synergy effect of multiple ion species
- New methodology to compare ion and neutron irradiated samples

Simulation and Modeling
- Irradiation effect on Ni based alloy
- Intergranular embrittlement by fission products
- MD simulation on molten salt and its interaction with materials
Collaboration to Move MSR Forward

- Material R&D for TMSR benefit from the rich heritage left by MSRE.

- Challenges to Material R&D for modern MSR require the application of modern technologies.

- Collaboration between SINAP and international universities and institutes will propel TMSR/FHR to success.