DEVELOPMENT OF A MOLTEN SALT SAMPLING SYSTEM DESIGN

Progress To-Date and Path Forward

Megan Harkema, Steve Krahn, Paul Marotta, Allen Croff
Nuclear Environmental Engineering Group, Vanderbilt University
INTRODUCTION

• MSRs require the ability to sample the hot, highly-radioactive fuel salt (or primary coolant salt) and to introduce additional (e.g. fuel or redox control) materials to monitor and control:
 • progress of corrosion
 • fissile material consumption and isotope distribution
 • fuel salt redox condition
 • in-leakage of coolant salt or other contaminants

• The Molten Salt Reactor Experiment (MSRE) employed a “Sampler-Enricher” (S-E) to access and remove fuel salt for analysis. However, the system’s operation was marginal.
 • Vanderbilt University, the University of Michigan, and Idaho National Laboratory are leading a NEUP-funded project to develop and demonstrate, in a non-radioactive environment, a modern equivalent to the S-E with improved reliability and the potential to serve as a technology model for future MSRs.
The MSRE S-E was used to:

- Remove salt samples from the MSRE fuel salt loop for subsequent laboratory analysis.
- Enrich salt or add chemistry control materials to the MSRE fuel salt loop.

The MSRE S-E exhibited operability and reliability issues that make it a candidate for redevelopment for use in future MSRs. Frequent issues included:

- Loss of control of sampling capsules (temporary and permanent)
- Manipulator boot ruptures
- Radionuclide leakage from salt-fouled valves
MOTIVATION FOR MOLTEN SALT SAMPLING SYSTEM

• Online monitoring has been suggested for measuring and tracking operational characteristics in advanced reactors, including MSRs; however...

 • Prediction of physical and chemical properties of molten salts with online monitoring technologies utilizes models/correlations still in development
 • Model refinement will likely benefit from or require measurements only made possibly by molten salt sampling within an operating MSR

 • Fuel qualification
 • Predictive models used to fully understand fission and corrosion product behavior require extensive MSR experimental databases that do not yet exist
 • Shortcomings in predictive models has led ORNL to suggest that MSR fuel qualification will be done within the first reactors and require primary salt sampling (ORNL/LTR-2018/1045)

 • A molten salt sampling system may also be used as a means of controlling salt composition and reactivity
 • Could be used to insert fissile/fertile material or chemistry control additives into the reactor
PROJECT SCOPE

Task 1
• Investigate historical molten salt system technical documentation to fully characterize molten salt sampling system interfacing systems and functional requirements.

Task 2
• Develop initial conceptual design that incorporates modern-day technological advances, design standards, previous molten salt sampling system experience, and stakeholder input.

Task 3
• Perform hazard evaluation/reliability modeling concurrently with the design development process.

Task 4
• Create initial physical prototype of conceptual molten salt sampling system design.

Task 5
• Perform prototype testing in water-based environment (time permitting) and in molten salt environment (at University of Michigan FLUoride Salt Test Facility [FLUSTFA])

Task 6
• Make design changes and develop and test second iteration physical prototype (if necessary).
STAMP-BASED ANALYSIS OF THE MSRE S-E

- The Systems Theoretic Accident Model and Process (STAMP) is an accident analysis methodology that uses systems engineering insights to model accidents as inadequate enforcements of "constraints"
 - Constraints: limits placed on design and operation that a system must adhere to for safe operation
- STAMP can help account for accident contributors that may be overlooked in traditional accident analysis methods

<table>
<thead>
<tr>
<th>Occurrence No.</th>
<th>Description of Occurrence</th>
<th>Corrective Action Nos.</th>
<th>Description of Corrective Action</th>
<th>Hazard</th>
<th>Goal of SCS</th>
<th>Related System Function</th>
<th>Design Insight</th>
</tr>
</thead>
<tbody>
<tr>
<td>65-2-1.2</td>
<td>Maintenance gate valve leak through the upper seat of the maintenance valve, causing difficulty with proper operation of the interlock that used buffer pressure to indicated whether the valve was fully closed.</td>
<td>3039-65-2-CA-3</td>
<td>Cleanup would have been difficult and valve replacement was not warranted so a mechanical method of assuring the valve was closed was substituted for the pneumatic method.</td>
<td>1- release of radioactive gas or particulates</td>
<td>prevent release of radioactive gas or particulates</td>
<td>1.5.1: Prevent contaminant ingress into system. 1.5.2: Minimize fission product egress from system.</td>
<td>Removing molten salt from the fuel salt loop can result in liquid salt sticking to the external of the sampling vessel. This salt can drip onto (or break off if it freezes) and contaminate system internals and potentially interfere with valve performance. Care should be taken to minimize the possibility of internal system contamination from solid or liquid salt droplets, possibly by incorporating a dedicated cleaning system or by facilitating modular component replacement.</td>
</tr>
<tr>
<td>65-2-8.1</td>
<td>Failure of manipulator boot from boot overpressure</td>
<td>66-1-CA-1.2</td>
<td>A new safety-grade circuit was added to close valve in the exhaust line to the vacuum pump to prevent the development of excessive differential pressure across the boot during sampler evacuation operation</td>
<td>1- release of radioactive gas or particulates</td>
<td>prevent release of radioactive gas or particulates</td>
<td>1.7.4.2: Prevent system operation in the event of unsafe conditions.</td>
<td>Manipulators are useful tools for remote handling of highly radioactive materials. To this day, manipulators boots are prone to rupture and subject to frequent corrective maintenance. If a molten salt sampling system design includes the use of manipulators to handle radioactive salt, care should be taken to ensure that the required barriers to containment are met during sample manipulation. Preferably, these barriers would not consist of the manipulator boots themselves. Design alternatives such as modern three-dimensional robots may also be substituted for manipulators.</td>
</tr>
<tr>
<td>66-1.2</td>
<td>Capsule hang up upon sample withdrawal (the capsule or latch had hung on the gate of the operational or maintenance valve), Cable backed up into the drive unit box and caught in the motor gears.</td>
<td>66-1-CA-10</td>
<td>The open limit switches for the operational and maintenance valves were reset to open the valves wider.</td>
<td>2- inability to sample or enrich fuel salt</td>
<td>prevent loss of ability to understand makeup of fuel salt/monitor operability of the reactor</td>
<td>1.3.1: Transport collection device from fuel salt system to system boundary. 1.3.2: Transport collection device from system boundary to fuel salt system.</td>
<td>Regardless of transport mechanism, the travel of the sampling vessel can be easily impeded by small projections into the internals of the system. The system should be designed with sufficient clearance between the sampling vessel and the vessel confinement mechanism to minimize the possibility of the vessel's travel being impeded by any obstructions.</td>
</tr>
</tbody>
</table>
REQUEST FOR STAKEHOLDER INPUT

• In order to ensure that the molten salt sampling system design meets expectations and exhibits the appropriate functionality, the project team is requesting MSR vendor input on the items below (discussed in the following slides).
 • The high-level functions identified for the molten salt sampling system
 • The completeness of the list of molten salt sampling system interfacing systems
 • The molten salt sampling system freeze port design concept

We plan to follow-up (via email) with those present after the workshop to provide a summary of the systems engineering work performed on the design to-date and request your formal input via a short questionnaire
MOLTEN SALT SAMPLING SYSTEM FUNCTIONAL HIERARCHY (AS PERCEIVED BY PROJECT TEAM)

1. Salt sampling: remove salt samples from a molten salt stream to determine salt characteristics
2. Controlling fluorine potential (redox): inserting reducing materials to counteract the oxidizing effects of fission
3. Gas sampling: removing cover gas samples (containing fission gases) from a molten salt stream’s expansion volume to determine cover gas characteristics
4. Enriching: adding fissile or fertile material to a salt stream
5. Managing bulk fuel salt fission product concentrations: removing bulk fuel salt to maintain acceptable concentrations of fission products
6. Miscellaneous testing (e.g., inserting materials coupons into the fuel salt and/or cover gas)

Functions performed by MSRE S-E
MOLTEN SALT SAMPLING SYSTEM
INTERFACING SYSTEMS

MSRE System
- Fuel Circulating System
- Cover Gas System
- Off-gas System
- Electrical Services System
- Radioactive Materials Analytical Laboratory
- Sample Transport System
- Component Cooling System
- Instrumentation and Control System
- Data Logger
- Containment Ventilation System
- MSRE Operator

Equivalent Modern System
- Primary Salt Circulating System
- Inert Gas Supply System
- Off-gas System
- Power Supply System
- Salt Analysis System
- Auxiliary Heat Transfer System/Secondary Containment
- Reactor I&C/Monitoring System
- Cell Air System
- System Operator
FREEZE PORT CONCEPT

Concept for prototype system being designed to fit the University of Michigan FLUSTFA loop

UM FLUSTFA Conditions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary Structural Material</td>
<td>SS 316-H</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>550-700 °C</td>
</tr>
<tr>
<td>Molten Salt Composition</td>
<td>Eutectic LiF-NaF-KF (46.5-11.5-52 mol%)</td>
</tr>
<tr>
<td>Cover Gas</td>
<td>Nitrogen</td>
</tr>
</tbody>
</table>
FREEZE PORT OPERATION

• **Open port**
 - Open bleed valve to purge existing gas
 - Increase N2 purge gas pressure to match salt system pressure
 - Secure cooling air, energize port heaters
 - Monitor port thermocouples and possible level sensors
 - Monitor N2 flow
 - Flow initiates
 - Port temperatures drop
 - Port is open

• **Close port**
 - Shut off port heaters
 - Start cooling air flow
 - Shut off N2 flow
 - Monitor port temperatures
 - Open bleed valve slowly
 - Port temperatures indicate frozen salt in port
 - Shut bleed valve

Initial Conditions
- Freeze port installed with nitrogen in headspace and frozen salt in port tubing
- Cooling air provided to port tubing
- Salt system heated and flow established through main salt system piping
- After collection and incorporation of stakeholder input into molten salt sampling system design, a hazard evaluation of the new design will be performed.
 - A hazard evaluation of the MSRE S-E has already been completed.
- Choice of hazard evaluation is design-specific. It depends on:
 - Availability of design information
 - Resources available
 - Breadth of hazards considered

- After hazard evaluation insights are incorporated into design, a design prototype will be fabricated and prepared for testing.
SPECIAL THANKS TO OUR PARTNERS AND SPONSORS

Dr. Xiaodong Sun

Dr. Piyush Sabharwall
QUESTIONS OR COMMENTS?
REFERENCES

BACK-UP SLIDES
The Systems Theoretic Accident Model and Process (STAMP) is an accident analysis methodology that uses systems engineering insights to model accidents as inadequate enforcements of “constraints”

Constraints: limits placed on design and operation that a system must adhere to for safe operation.

STAMP can help account for accident contributors that may be overlooked in traditional accident analysis methods.
MSRE S-E FUNCTIONAL DECOMPOSITION

1.0: MSRE Sampler-Enricher

1.1: Interface with salt in fuel salt loop
 1.1.1: Control/verify the amount of salt sampled
 1.1.2: Collect salt from fuel salt system
 1.1.3: Introduce fissile material to fuel salt system
 1.1.4: Control the amount of fissile material introduced to fuel salt system
 1.1.5: Introduce chemistry to fuel salt system
 1.1.6: Control the amount of chemistry control material introduced to fuel salt system

1.2: Interface with gas in fuel salt loop
 1.2.1: Control/verify the amount of gas sampled
 1.2.2: Collect gas from fuel salt loop gas space

1.3: Manipulate collection device within system boundaries
 1.3.1: Transport collection device from fuel salt system to system boundary
 1.3.2: Transport collection device from system boundary to fuel salt system
 1.3.3: Monitor positioning of collection device within system
 1.3.4: Preserve integrity of gaseous samples

1.4: Maintain material quality
 1.4.1: Preserve salt sample integrity
 1.4.2: Preserve integrity of fission/fissile material
 1.4.3: Preserve integrity of gaseous samples

1.5: Confinement
 1.5.1: Prevent contaminant ingress into fuel salt
 1.5.2: Minimize uncontrolled fission product egress from system

1.6: Maintenance
 1.6.1: Accommodate corrective maintenance
 1.6.2: Accommodate preventive maintenance

1.7: Safety
 1.7.1: Manage ionizing radiation hazard
 1.7.2: Manage chemical hazards
 1.7.3: Manage industrial hazards
 1.7.4: Manage criticality hazard

Request for expert input:
Should a modern molten salt sampling system be able to perform these four functions?