

Decommissioning Challenges at the Molten Salt Reactor Experiment Site

Eric Abelquist and Tommy Morgan

2021 Virtual Molten Salt Reactor (MSR) Workshop October 12, 2021

MSRE Aerial View

Overview of MSRE Facility

- 8 MW DOE test reactor operated from 1965 1969 to demonstrate molten salt breeder reactor technology
- Nuclear Category 2 facility
- MSRE originally fueled with ~218 kg of uranium, consisting of 30% U-235 and 70% U-238, to the carrier salt
- Later refueled with ~37 kg of uranium, consisting of 80% U-233 and 20% U-235—the first nuclear reactor to operate with U-233
- ²³⁹PuF was used to demonstrate flexible reactor operations near the end of the U-233 fuel campaign

Nature of Reactor Operation

- Reactor used liquid fuel formed by dissolving UF₄ fuel in a carrier salt composed of a mixture of LiF, BeF₂, and ZrF₄
- In reactor vessel, fuel salt was circulated through channels of graphite to provide geometry/moderation necessary to sustain a nuclear chain reaction
- Heat was transferred from fuel salt to secondary coolant salt in the primary heat exchanger (at temperatures > 600°C)
- Coolant salt similar to the fuel salt, except that it contains only LiF (66%) and BeF₂ (34%)
- Coolant salt passed from the primary heat exchanger to an aircooled radiator, a coolant salt pump, and then returned to primary heat exchanger

pg. 4

Nature of Reactor Operation (continued)

Nature of Reactor Operation (continued)

Nature of Reactor Operation (continued)

UNCLASSIFIED ORNL-LR-DWS 61097R

Current Conditions of Fuel Salt

- Salts cooled and solidified into a monolithic mass; radiolysis from beta/gamma radiation constantly generates fluorine gas
- Residual fuel salt remains stored in 2 fuel drain tanks (each 80 ft³)
 - Uranium present at <2.5 kg U per tank
 - Fission/activation product radioactivity predominantly (98%) from Cs-137 and Sr-90; volatile fission products treated via off-gas system (not retained in fuel)
 - Actinide radionuclide inventories by U-232 (via impurity) and U-233 decay chains; TI-208 and its 2.6 MeV gamma (100% intensity), exposure rates ~37 R/h per gram of salt
- Flush salt (similar composition to coolant salt) contains less than 2% of uranium and fission products; drained into fuel flush tank

MSRE Cross-Section View

Fuel Drain Tanks/Fuel Flush Tank in Drain Tank Cell

Decommissioning Options*

- Once a facility has reached the end of its operational life a decision must be made regarding its future
- MSRE decommissioning options have been considered and evaluated for decades
- Decommissioning options include:
 - DECON
 - SAFSTOR
 - ENTOMB (also called in situ D&D)

* These decommissioning options are commonly used for commercial nuclear reactors; recognizing MSRE was a DOE test reactor

DECON

- Generally, DECON most popular option because it settles the decommissioning issue once and for all
- Facility is decontaminated and/or dismantled to levels that permit release; contaminated equipment is either decontaminated or removed as radioactive waste
- Key issue Does salt waste have a disposal option?

SAFSTOR

- SAFSTOR involves maintaining the facility in a safe condition over a number of years, by performing surveillance and maintenance (S&M) activities—eventually followed by D&D
- SAFSTOR is considered deferred dismantlement, while DECON is prompt dismantlement
- To prepare facility for SAFSTOR, used fuel is removed from the reactor vessel and radioactive liquids are drained from systems and components—leaving the facility in a stable condition
- Surveillance and maintenance activities continue to be performed at MSRE

ENTOMB

- ENTOMB involves encasing contaminated portions of the facility in a structurally long-lived material, e.g., grout
- ENTOMB concept is to isolate the contamination from the environment, mainly by keeping water out of the containment
- Most likely source of potential exposure is due to inadvertent leakage of contamination from an entombed structure
- Residual radioactivity levels must be acceptable for release following an entombment period (e.g., 60 y, 100 y, 300 y)
- In situ D&D (ISD) has many similar attributes to ENTOMB

Drivers to Take Decommissioning Action

- MSRE is an aging facility—while S&M provides a measure of risk mitigation, ultimately DOE and stakeholders desire more permanent and lasting decommissioning outcome
- Remove/mitigate risk to ongoing ORNL operations/mission; e.g., environmental releases to groundwater
- Fuel drain tanks and associated components are protected from groundwater due to sump pumps that must remove groundwater (FDTs are below the natural water table elevation)
- Physical barriers including concrete cell walls and stainless steel liner must be maintained to ensure integrity of tanks and piping

Major D&D Activities Performed To-Date

Timeframe	Notable Activities		
1971-1989	Routine maintenance and "salt annealing" (to prevent F ₂ accumulation in drain tank cell)		
1994	Positive confirmation of "uranium migration" Failed off-gas valve resulted in notable uranium deposits in off-gas charcoal bed		
1995-2000	Uranium denaturing and removal, install Reactive Gas Removal System		
2001-2008	Restoring salt chemistry, defueling, attempt salt transfer		
2008-present	Reactive gas management operations, surveillance & maintenance		

Uranium Fuel Recovery—Auxiliary Charcoal Bed

- Due to radiolysis process in fuel salt, high concentrations of fluorine (F₂) and uranium hexafluoride (UF₆) gases were present in the off-gas system piping
- Estimated 2 to 3 kg UF₆ migrated to auxiliary charcoal bed (ACB), and another 1 kg migrated to other 4 charcoal beds via MSRE offgas system
- Majority of the uranium-laden charcoal material residing within the ACB has been safely removed using uranium deposit removal system, remote equipment, and long-handled tools
- Estimated 4 kg of uranium stored in charcoal canister within a concrete shielded cask; awaiting processing and disposal

Uranium Fuel Recovery—Fuel Salt

- U fuel recovery tasks were completed from 2004 to 2008:
 - salts were melted and chemically treated,
 - molten salts were fluorinated to remove uranium,
 - uranium was condensed into cold traps and transferred to chemical (NaF) traps, and
 - NaF traps loaded with the uranium were transferred to an ORNL building for storage
- Fuel salt in two fuel drain tanks and flush salt in flush tank melted for removal using a process known as "pool melt" using a heated probe to melt the salt
- Hydrofluorination process conducted by sparging the melted salt with mixture of hydrogen fluoride, hydrogen and helium to restore chemical balance in the salt; ensuring uranium is in the form of UF₄

MSRE-Specific S&M Activities

- Routine maintenance activities are required to ensure the proper functioning of:
 - Facility ventilation systems
 - Radiological monitoring equipment
 - Facility systems such as heating and air conditioning units
 - Overhead cranes
- Maintaining Reactive Gas Removal System (RGRS), which has been in operation since 1996 to remove reactive gases containing uranium material (UF₆) and other reactive gases (F₂, MoF₆, HF, etc.); capturing effluent on NaF/alumina traps

pg. 19

Upgrades for Long-Term S&M

- Planned general facility upgrades include:
 - Sump pump systems
 - Electrical distribution system
 - Fire detection and suppression
 - Process monitoring systems
 - Roof and drainage
- Continuous Purge System (CPS) replacing RGRS
 - Continuous gas sweeping design using nitrogen to dilute and purge fluorine from each of the tanks, then further dilutes the gas mixture with a fan, prior to discharge external to the MSRE high bay
 - More automated operations; lower risk to facility workers

Decommissioning Challenges

- Aging facility/equipment
- Challenging working environment due to radiological/hazardous conditions—requires personal protective equipment (PPE), special tools, portable maintenance shield (PMS)
- Salt waste form—Is there an ultimate disposition pathway/home for waste, like WIPP?

Aging Facility and Equipment

- Potential breach of drain tanks is considered to be highest risk at MSRE
 - Would result in F_2/HF release, difficult to isolate
 - Evaluate need for tank integrity measurements
 - Assess extent of tank corrosion on thinning of the tank walls and heat exchanger thimbles
- Relying on ventilation system that is original to the facility for safety significant functions
- Piping and tubing containing holdup infrequently monitored

pg. 22

Aging Facility and Equipment (continued)

Fig. 2.6. Fuel-Salt Drain Tank.

Challenging Working Conditions

- Performing D&D with portable maintenance shield
 - Need adequate ventilation flow rate when the PMS openings are increased to permit access to drain tank pit
 - PPE due to fluorine gas hazard and rad contamination
- High radiation areas—largely due to Cs-137, and many other rad constituents fission products and U-232 progeny (Tl-208)
 - FDT#1 has 35 ft³ salt 6800 Ci (3000 Ci of Cs-137)
 - FDT#2 has 31 ft³ salt 5700 Ci (2500 Ci of Cs-137)
 - FFT has 68 ft³ salt 200 Ci (2500 Ci of Cs-137)
 - Exposure rates from FDT#1 and #2 very high (>1000 R/h) requires use of remote tools and significant shielding

Portable Maintenance Shield

Salt Waste Form/Uranium Disposition

- Major waste streams to be generated by the MSRE D&D project:
 - Fuel salt, and salt-contaminated components
 - Uranium-laden charcoal
 - Collection canister
 - Remaining uranium in the charcoal beds
 - Asbestos, lead, and PCB-contaminated equipment
- How to disposition the uranium-laden charcoal?
- What salt waste form will be accepted at WIPP?
 - Fissile material content limit
 - Passive fluorine management

WIPP Disposal

 Preliminary analysis shows that MSRE salt waste meets WIPP waste acceptance criteria

Regulation	RH Waste Limit	FDT#1 Salt	FDT#2 Salt	FFT Salt
LWA Sec 7(a)(2)	Specific Activity <23 Ci/L	9.43 Ci/L	9.57 Ci/L	0.167 Ci/L
LWA Sec 2(18)	TRU Activity Density >100 nCi/g	13,696 nCi/g	13,711 nCi/g	275 nCi/g

- "As-received," waste container gas generation*
 - Waste containers required to be vented
 - MSRE salt F₂ generation management needs to be addressed
 - Passive getters, accept F₂ release, entrained getters

*Flammability and explosiveness are not anticipated to be technical issues of concern for MSRE salt waste

Conclusions/Recommendations

- SAFSTOR approach is working
 - Facility in safe, stable condition
 - Spending \$\$\$ while delaying decision on salt waste disposal
- ENTOMB optimizes SAFSTOR condition for next 50 years
 - Reduces potential for environmental releases
 - Land use controls required to maintain protectiveness
 - Best alternative if salt waste not approved for WIPP
- DECON addresses salt disposition and eliminates future liability
 - Technical challenges exist for salt removal and WIPP disposal
 - Ultimate solution for addressing environmental risk at ORNL via long-term salt disposal at dedicated facility

pg. 28