Development of Laser Induced Breakdown Spectroscopy Sensor for Molten Salt Reactor Off-Gas Stream

Hunter Andrews
K. Myhre, Joanna McFarlane, Shay Chapel, N. Dianne Ezell
MSR Workshop 2021
October 13th, 2021
We’re seeking to enable molten salt reactor (MSR) deployment by developing technology for off-gas analysis

- Quantify fission and activation products in off-gas system
- Monitor off-gas treatment component efficiency
What is laser-induced breakdown spectroscopy (LIBS)?

Laser ablation and optical emission collection

- Laser Power
- Laser Head
- Spectrometer
- Fiber Optic
- Focal lens
- Plasma
Why laser induced breakdown spectroscopy (LIBS)?

Elemental analysis via optical emission spectroscopy of laser induced plasmas

• Benefits:
 - Little to no sample prep
 - Useful for solid, liquid, and gas analysis
 - Typical sensitivities of ppm
 - Quasi-nondestructive (nanograms per shot)
 - Can be completely fiber optic based
Design Challenges

• Producing a surrogate aerosol stream
• Designing a measurement cell
A collision nebulizer was selected to generate aerosol stream for analysis

Aerosol particle sizes range from ~1-10 µm in diameter.
A sheath gas approach was used to contain aerosol stream during measurement
Sheath gas system successfully contained aerosol stream

Sheath gas is turned on and off repeatedly
A complete prototype aerosol measurement system was manufactured.
Aqueous aerosol monitoring system

• The three representative elements selected were Gd, Nd, and Sm
 – All act as neutron poisons in a reactor making their concentrations of interest to operators.
 – Concentrations ranging from 0 to 2000 ppm in liquid reservoir
 – 2000 ppm in reservoir ≈5 ppb in aerosol stream
Regression models were developed using a set of calibration samples

Sample 2 is Gd dominant
Sample 11 is Nd dominant
Sample 13 is Sm dominant
What is PLS regression?

Partial Least Squares Regression (PLS)
1. Matrices X and Y are decomposed into latent structures in an iterative process.
2. The latent structures corresponding to the most variation of Y (u_i) is explained by a latent structure in X (t_i) which explains it the best.

Note: the goal is to explain the most variance in Y, not necessarily X.
Predicted concentrations of validation samples match ICP-OES measurements
Performing a demonstration to show the measurement system’s capability to provide real-time monitoring

• Stock solutions pumped in/out of reservoir to nebulizer to allow real-time changes in concentrations
Initial concentration predictions leave room for improvement

The RMSE values were calculated to be 249, 108, and 99.8 ppm for Gd, Nd, and Sm, respectively.
A genetic algorithm is an optimization approach based on Darwin’s theory of evolution.

1. **Initialize**
2. **Population**
3. **Evaluation**
4. **Preserve Best Chromosomes**
5. **Crossover**
6. **Mutation**
7. **Terminate**

- $g = 0$
- $g = g + 1$
- $g = g_{max}$
A genetic algorithm was used to refine PLS feature selection.

Start, $g = 1$

Starting Population

Fitness Evaluation
$f_{best,g} = best$ score

$g = g + 1$

Yes, $f_{best,g} > f_{best}$ and $j = 0$

New Population
60% Children
30% New Genes
10% Retained Genes

New Population
90% New Genes
10% Retained Genes

No

Yes, $j_{max} = j_{max} + 10$ and $j = 0$

Yes, $g < g_{max}$?

End

Number of LVs

Gd: 5 → 4
Nd: 6 → 3
Sm: 9 → 3
Genetic algorithm filtered models showed dramatically improved results

The RMSE values were calculated to be 66.5, 89.2, and 75.3 ppm for Gd, Nd, and Sm, respectively.

This corresponds to a 73, 18, and 25% decrease in RMSE value from the previous model predictions.
Gaseous monitoring system

- The four representative elements selected were Xe, Kr, Cs, and Rb
 - Xe and Kr are expected to be large contributors to the off-gas loading
 - 0 to 10 g/h
 - Cs and Rb are the corresponding daughters of these gases
 - 0 to 2000 ppm
Krypton and xenon showed strong spectral responses

Collected LIBS spectrum of sample 7 containing 1.21 and 1.90 mol% of Xe and Kr and 2000 ppm Rb.
A closer look at collected spectra reveal strong gas peaks

Collected LIBS spectrum of a blank sample (sample 5) and sample 14 containing 1.21 and 1.90 mol% of Xe and Kr and 2000 and 1800.9 ppm of Cs and Rb.
Xe and Kr univariate models were developed

Univariate calibration models, dashed lines, comparing (a) 881.94 nm Xe I peak area and (b) 760.15 nm Kr I peak area response to changes to Xe and Kr mass flow rates, respectively.
Analytes in test samples were predicted using constructed models

*signifies a univariate regression model
The Kr concentration was successfully predicted in real-time

Model predictions for the concentration of Kr gas compared to converted flow meter measurements in systems where the gas flow rate is changed
In summary, we have demonstrated a LIBS capability for monitoring aerosols and gases.

- Our sheathed gas measuring system allows effective measurement of the sample stream while protecting optical components
- Multiple elements were simultaneously quantified in the two studies discussed
- A genetic algorithm was used to refine a quantitative model
- Both gases and aerosols were able to be monitored in real-time
Where is this project headed next?

- Future work involves completion of a molten salt aerosol test stand and integrating LIBS sensors with off-gas treatment systems.
Acknowledgments

MSR Campaign Team

- **NTD for Technology Development**: Patricia Paviet
- **NTD for MSR Licensing**: Jim Kinsey
- **Licensing Framework**: David Holcomb, Dave Luxat
- **Technology Development**: Kevin Robb, Jordan Massengale
- **Chemistry**: Jake McMurray, Mark Williamson, Toni Karlsson, Nathan Hoyt
- **Tritium**: Paul Humrickhouse
- **Thermophysical Properties**: Melissa Rose, Ryan Gallagher, Dianne Ezell, Marissa Monreal
- **Structural Materials**: Bruce Pint, Jim Keiser
- **Graphite**: Nidia Gallego
- **Advanced Material Development**: Sam Sham
- **Waste forms**: Brian Riley
- **Salt Spill**: Sara Thomas, Bill Ebert
Questions?
E-mail: andrewshb@ornl.gov