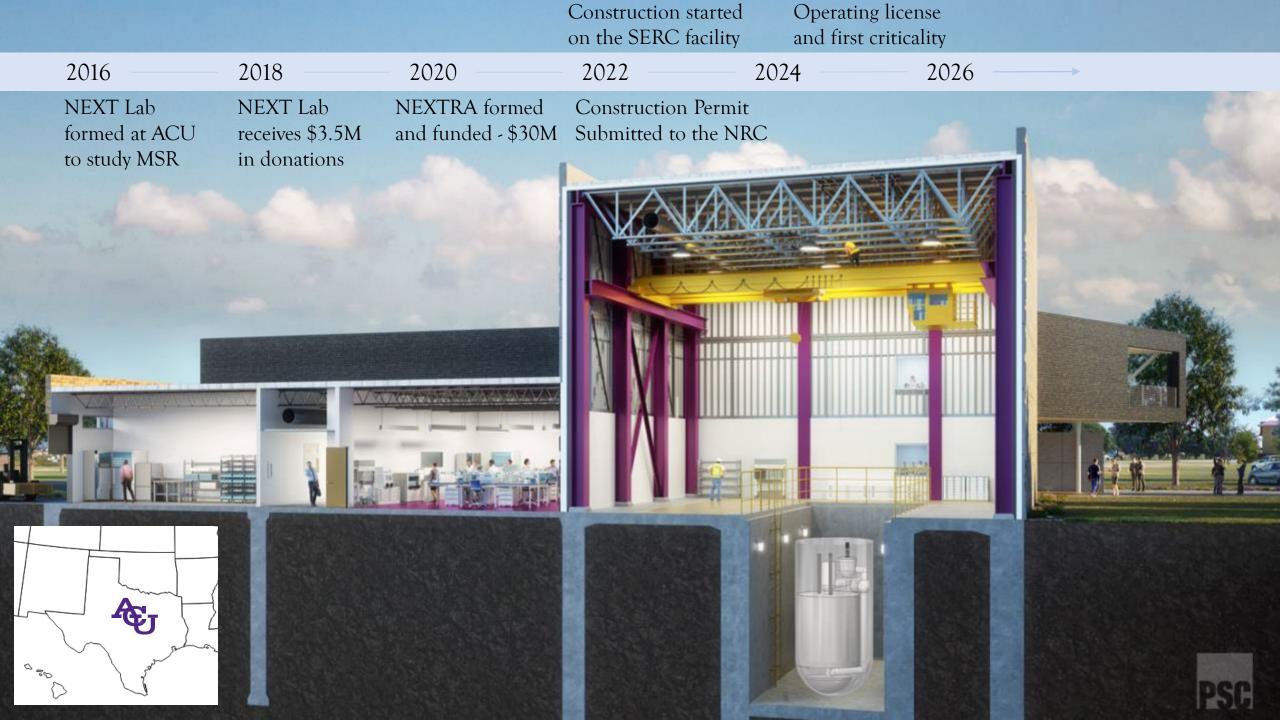


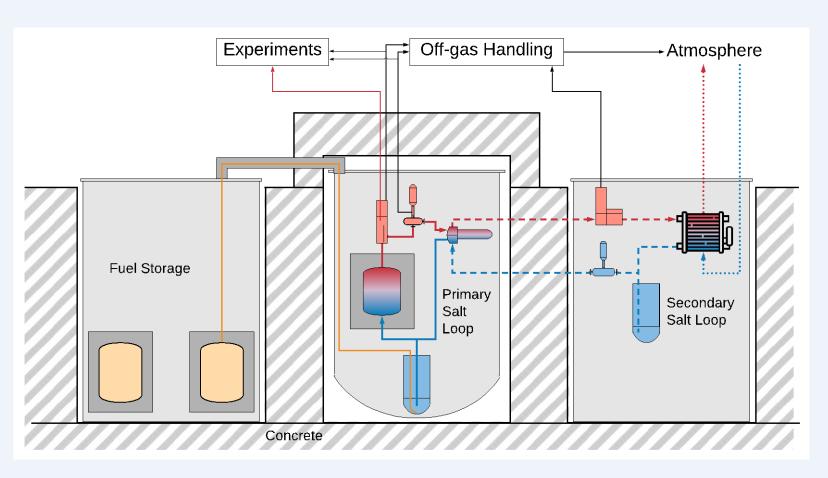
ACU MSRR Systems Modeling

Kevin Clarno

Associate Professor, Mechanical Engineering, UT Austin

representing the NEXT Research Alliance





UNIVERSITY

MSRE

shared concepts

- $UF_4 LiF-BeF_2$ fuel
- Loop design
- Graphite moderator
- Drain tank
- Trench-based radiation protection
- 5-years of full-power operation

MSRR

simplified concepts

- 19.75% instead of 33% ²³⁵U
- 1 MWth instead of 8-10 MWth
- SS-316 instead of Hastelloy-N
- No rad-gas management system required
- Utilizing 50 years of technology advancement

UNIVERSITY

What are the key goals?

Demonstrate licensing

• Develop advanced reactor licensing experience: for NEXTRA and the NRC

Establish initial supply chain

• Construction and supply chain have plagued traditional and advanced reactor concepts

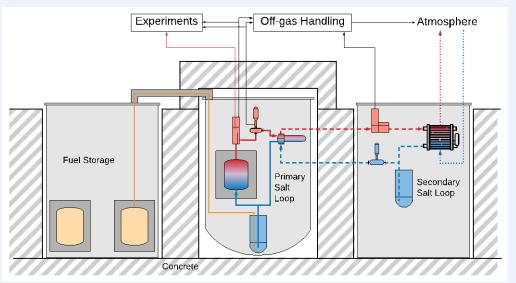
Generate operational data

- Demonstrate molten salt chemistry management
- Qualify nuclear software
- Understand material accountability challenges

Requirements for System Code Selection

- Input to Design/Operations/MHA
 - Maximum power during transient
 - Maximum temperature of materials
 - Maximum/min salt temperature
- Validated for the leading physics
 - Neutron kinetics
 - Thermal-fluid dynamics
 - System-responses

- Soft Requirements
 - Complete and available
 - Familiar to the NRC
 - Used with operating reactors
 - Familiar to the NEXTRA team
 - Capable of being extended
- Not requirements
 - NQA-1 approved development process
 - Accounting for all of the physics

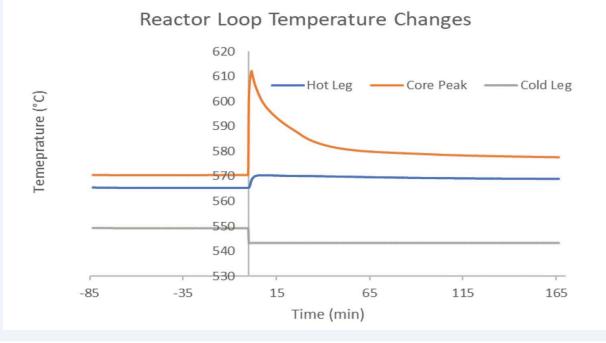


RELAP5-3D

- Simplified Physics
 - 1D channel flow with conduction in solids
 - Point Reactor Kinetics (and 3D)
 - Operator and safety system models
- Extended (by INL through a GAIN Voucher)
 - Thermophysical properties for multiple salts
 - Added flowing fuel neutron kinetics
- Sufficient, but not ideal
 - Meets the requirements, but lacking physics for a commercial system

Key Contributors

- Mark Kimber (Texas A&M)
- Kraig Farrar (Texas A&M)
- Jonathan Scherr (ACU)
- John Ross (Texas)
- Yong Joon Choi (INL)


Accident Analyses

- Salt Spill Accidents (MHA)
- Cooling Anomalies
- Fuel Handling Anomalies
- Reactivity Insertion Accidents
- Surveillance System Malfunction
- Loss of Electrical Power
- External Events

Preliminary SAR

- https://adams.nrc.gov/wba/
- ID: ML22227A203
- Chapter 13: Accident Analysis

Figure 13.1-5 Hot Leg, Cold Leg, and Center Channel Peak Temperatures on Pump Failure

Limiting Reactivity Insertion Accident

rature Figure Design the MSRR to be so passively safe that students can operate it Poak Fuel Salt Tom Reactor power in MW lemperature in °C Time since beginning of insertion in seconds Time since beginning of insertion in seconds

Fuel Salt Pump Failure (70 pcm)

- Gas in coolant leaves core increasing density (400 pcm)
- Xenon (in gas) leaves core (120 pcm)

- Control rods errantly slowly withdraw (190 pcm)
- No SCRAM (fuel salt draining)

Future System Modeling Code Options

Requirements

- Account for all of the physics
- Informed with higher-resolution software
- Strong software quality assurance
- Verified through numerical analysis
- Validated with SE and IE tests
- Calibratable from MSRR data
- Integrated optimization and UQ
- Integrated engineering analysis and visualization
- Coupled with scientific surveillance layer

Options

- Near-Term
 - SAM^X
 - MELCOR
 - VERA-MSR
 - GenFOAM
 - Each can include all physics
 - All utilize simplified physics and geometries
- Long-Term
 - Pronghorn+Griffin^X
 - Shift+NEK-RS^X
 - Extensible to include all physics in the future
 - Utilize highest-resolution physics/geometry

$^{\rm X}$ Actively funded by DOE-NE

Commercial reactors will be optimized to operate closer to design limits

TEXAS A&M

Backup Slides

TEXAS A&M

Limiting Reactivity Insertion Accident

3.5 -----Safety limit Peak Fuel Salt Temp. - - - Operating limit 830 3 780 Reactor power in MW 2.5 lemperature in °C 730 2 680 1.5 1 630 0.5 580 20 40 60 80 100 120 0 0 20 40 60 80 100 120 0 Time since beginning of insertion in seconds

Time since beginning of insertion in seconds

Figure 13.1-16 Second Limiting Reactivity Insertion Power

Collapse of all bubbles in salt

- With Loss of Cooling (Pump Trip)
- 420 pcm total insertion over 26 seconds

UNIVERSITY

Figure 13.1-15 Second Limiting Reactivity Insertion Temperature

