The LANL Molten Salt Research Capability: 2022 Status Update

Marisa Monreal
Inorganic, Isotope, and Actinide Chemistry (C-IIAC)
Chemistry Division
Los Alamos National Laboratory
mmonreal@lanl.gov

Physical Properties of Molten Salts Session
2022 Hybrid Molten Salt Reactor Workshop
Oak Ridge National Laboratory

October 12, 2022

LA-UR-22-30476
Outline

• “What we can do”
 - Describe LANL molten salt properties research capability; highlight 2022+ status & plans
 ▪ Include:
 - Types of materials we handle
 - Limitations
• “What we need to do as a community”
 - As prompts for discussion, describe growth areas, opportunities where we can continue to improve

PI: Marisa Monreal (C-IIAC); Co-PIs: David Andersson (MST-8), Matt Jackson (MST-16)

Main objectives:
1. To integrate advanced characterization techniques in both experiment and modeling
2. To generate an experimentally validated predictive capability with quantified uncertainty for actinide-molten chloride salts (uranium, thorium, and plutonium)

Technical goals:
1. Develop atomic scale simulations of macroscale properties, then parametrized physics-based models with quantified uncertainty *(Modeling and Simulation Thrust – Lead: David Andersson)*
2. Synthesize and prepare pure materials: actinide chlorides and solvent salts; examine local structure *(Chemistry Thrust – Lead: Marisa Monreal)*
3. Experimentally determine macroscale properties *(Thermophysical Properties Thrust – Lead: Matt Jackson)*
Properties Measurements at LANL

<table>
<thead>
<tr>
<th>Properties</th>
<th>Experimental Techniques</th>
<th>2022+ Status, Plans</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density</td>
<td>Neutron Radiography*</td>
<td>Neutron Radiography Measurements on PuCl₃</td>
</tr>
<tr>
<td></td>
<td></td>
<td>X-ray Radiography</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Conventional (Push-rod) Dilatometry</td>
</tr>
<tr>
<td>Melt Point (T_m)</td>
<td>Differential Scanning Calorimetry (DSC)*</td>
<td>DSC Measurements on PuCl₃</td>
</tr>
<tr>
<td>Heat Capacity (C_p)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enthalpy of Fusion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrosivity, redox potentials</td>
<td>Electrochemistry</td>
<td>Simultaneous ion-beam irradiation and corrosion experiments, with</td>
</tr>
<tr>
<td></td>
<td></td>
<td>electrochemical monitoring</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(FUTURE EFRC)</td>
</tr>
</tbody>
</table>

*can be performed on Pu-bearing salt
Density using Neutron Radiography: Experimental setup in flight path

Flight Path 5 at Los Alamos Neutron Science Center (LANSCE)
Density using Neutron Radiography: Method ("Neutron Dilatometry")

Fluid height is determined using the known height of a feature on our reference.

- Images stitched together
- Heights determined at different temperatures

LiCl+KCl Eutectic Salts (Samples 29 & 30):

- 1020 °C
- 976 °C
- 876 °C
- 765 °C
- 665 °C
Density using Neutron Radiography: Uranium-molten chlorides

We have determined a series of molten chloride salt densities, including with UCl₃:

- For more details, please see two journal publications—paper containing density data¹ and imaging technique paper².

Have been working on improvements to reduce error:

- Mass: Increase sample mass to 4-11 grams (Taller furnace, taller samples)
- Radius: Measure the radius with water prior to measurement with salt
- Height: Taller sample tubes (~30 cm)
- Pixel Resolution: higher quality camera, image stacking, image subtraction.

Developing a higher throughput pushrod dilatometry method—recent successes with liquid salt containment (custom graphite holder)

Prepped for plutonium...

<table>
<thead>
<tr>
<th>Binary Eutectic Mixtures</th>
<th>(\rho_0) [g/cm³]</th>
<th>(\alpha \cdot 10^{-3})</th>
<th>Uncertainty</th>
<th>Range (K)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.505 LiCl + 0.495 KCl</td>
<td>2.0049</td>
<td>0.5148</td>
<td>±0.003</td>
<td>626-1390</td>
<td>This work</td>
</tr>
<tr>
<td></td>
<td>2.0077</td>
<td>0.5302</td>
<td>±0.001</td>
<td>642-1150</td>
<td>[50]</td>
</tr>
<tr>
<td></td>
<td>2.0183</td>
<td>0.5167</td>
<td>±0.003</td>
<td>740-860</td>
<td>[119]</td>
</tr>
<tr>
<td></td>
<td>2.0286</td>
<td>0.5268</td>
<td>±0.002</td>
<td>680-860</td>
<td>[76]</td>
</tr>
<tr>
<td></td>
<td>2.0292</td>
<td>0.5275</td>
<td>±0.0002</td>
<td>668-866</td>
<td>[124]</td>
</tr>
<tr>
<td></td>
<td>2.0183</td>
<td>0.5167</td>
<td>±0.008</td>
<td>720-1200</td>
<td>[94]</td>
</tr>
<tr>
<td></td>
<td>2.1148</td>
<td>0.8700</td>
<td>-</td>
<td>-</td>
<td>[40]</td>
</tr>
<tr>
<td>0.431 MgCl₂ + 0.569 NaCl</td>
<td>2.1615</td>
<td>0.5169</td>
<td>±0.01</td>
<td>720-1390</td>
<td>This work</td>
</tr>
<tr>
<td></td>
<td>2.1253</td>
<td>0.47419</td>
<td>±0.0006</td>
<td>1630-1100</td>
<td>[5]</td>
</tr>
<tr>
<td></td>
<td>2.2971</td>
<td>0.5070</td>
<td>-</td>
<td>-</td>
<td>[40]</td>
</tr>
<tr>
<td></td>
<td>2.002</td>
<td>0.48</td>
<td>-</td>
<td>1003-1173</td>
<td>[127]</td>
</tr>
<tr>
<td>0.494 NaCl + 0.506 KCl</td>
<td>2.1064</td>
<td>0.5439</td>
<td>±0.01</td>
<td>927-1390</td>
<td>This work</td>
</tr>
<tr>
<td></td>
<td>1.9764</td>
<td>0.5680</td>
<td>±0.0002</td>
<td>943-1182</td>
<td>[124]²²</td>
</tr>
<tr>
<td></td>
<td>2.1314</td>
<td>0.5679</td>
<td>±0.008</td>
<td>945-1170</td>
<td>[84]¹⁹¹⁰</td>
</tr>
<tr>
<td>0.328 MgCl₂ + 0.672 KCl</td>
<td>2.1187</td>
<td>0.5438</td>
<td>±0.02</td>
<td>710-1200</td>
<td>This work</td>
</tr>
<tr>
<td></td>
<td>2.0007</td>
<td>0.4571</td>
<td>±0.025</td>
<td>1630-1140</td>
<td>[5]</td>
</tr>
<tr>
<td></td>
<td>1.944</td>
<td>0.52</td>
<td>-</td>
<td>973-1173</td>
<td>[127]²²</td>
</tr>
<tr>
<td></td>
<td>1.896</td>
<td>0.47</td>
<td>-</td>
<td>923-1073</td>
<td>[136]</td>
</tr>
<tr>
<td></td>
<td>1.904</td>
<td>0.552</td>
<td>±0.002</td>
<td>723-1073</td>
<td>[26]</td>
</tr>
<tr>
<td></td>
<td>2.2548</td>
<td>0.4740</td>
<td>-</td>
<td>650-1056</td>
<td>[148]</td>
</tr>
<tr>
<td>0.66 NaCl + 0.34 UCl₃</td>
<td>4.2235</td>
<td>1.0347</td>
<td>±0.02</td>
<td>794-1390</td>
<td>This work</td>
</tr>
<tr>
<td></td>
<td>4.2990</td>
<td>1.5903</td>
<td>±0.0009</td>
<td>973-1122</td>
<td>[149]²³²³</td>
</tr>
<tr>
<td></td>
<td>3.8604</td>
<td>0.8371</td>
<td>±0.001</td>
<td>892-1142</td>
<td>[99]²²</td>
</tr>
<tr>
<td>0.81 KCl + 0.19 UCl₃ (El)</td>
<td>3.1756</td>
<td>0.7645</td>
<td>±0.015</td>
<td>841-1390</td>
<td>This work</td>
</tr>
<tr>
<td></td>
<td>3.3981</td>
<td>1.3827</td>
<td>±0.0008</td>
<td>1220-1280</td>
<td>[129]²²</td>
</tr>
<tr>
<td></td>
<td>4.6124</td>
<td>0.9531</td>
<td>±0.024</td>
<td>821-1390</td>
<td>[129]²²</td>
</tr>
<tr>
<td>0.43 KCl + 0.57 UCl₃ (E2)</td>
<td>8.405</td>
<td>4.1819</td>
<td>±0.0025</td>
<td>1180-1270</td>
<td>[129]²²</td>
</tr>
<tr>
<td>(NaCl + KCl) + 0.04 UCl₃</td>
<td>2.9026</td>
<td>0.5014</td>
<td>-</td>
<td>970-1270</td>
<td>[149]</td>
</tr>
<tr>
<td>(NaCl + KCl) + 0.137 UCl₃</td>
<td>3.7895</td>
<td>1.4775</td>
<td>-</td>
<td>970-1270</td>
<td>[149]</td>
</tr>
<tr>
<td>(NaCl + KCl) + 0.193 UCl₃</td>
<td>3.4585</td>
<td>0.9492</td>
<td>-</td>
<td>970-1270</td>
<td>[149]</td>
</tr>
<tr>
<td>0.45 NaCl + 0.31 KCl + 0.24 UCl₃</td>
<td>2.5352</td>
<td>0.7010</td>
<td>±0.02</td>
<td>1600-1400</td>
<td>This work</td>
</tr>
<tr>
<td>(0.905 NaCl + 0.130 KCl + 0.965 UCl₃)</td>
<td>3.4511</td>
<td>0.7432</td>
<td>±0.02</td>
<td>1600-1400</td>
<td>This work</td>
</tr>
<tr>
<td>0.49 NaCl + 0.462 KCl + 0.048 UCl₃</td>
<td>4.1241</td>
<td>0.9650</td>
<td>±0.02</td>
<td>1600-1400</td>
<td>This work</td>
</tr>
<tr>
<td>(NaCl + KCl) + 0.493 UCl₃</td>
<td>5.4813</td>
<td>2.0013</td>
<td>-</td>
<td>970-1270</td>
<td>[149]</td>
</tr>
<tr>
<td>(NaCl + KCl) + 0.718 UCl₃</td>
<td>5.9677</td>
<td>1.9953</td>
<td>-</td>
<td>970-1270</td>
<td>[149]</td>
</tr>
<tr>
<td>(LiCl + KCl) + 0.0065 UCl₃</td>
<td>2.0731</td>
<td>0.5290</td>
<td>±0.004</td>
<td>770-1390</td>
<td>This work</td>
</tr>
<tr>
<td>(LiCl + KCl) + 0.0077 UCl₃</td>
<td>2.1336</td>
<td>0.5311</td>
<td>±0.004</td>
<td>770-1390</td>
<td>This work</td>
</tr>
</tbody>
</table>

Density using Neutron Radiography: Preparation for Plutonium*

- Developed compact furnace
 - Reduced insulation
 - Moved elements

- Changes for plutonium containment:
 - **Primary**: Special Ni tubes have been fabricated
 - **Secondary**: New gas-tight design
 - **Tertiary**: Received and tested
 - All three levels have passed certification for LANSCE

- **Our beam time starts end of October**

*Grateful acknowledgment to Toni Karlsson and team at INL for material!
Container-based dilatometry is viable up to 1000° C
- Loss of material during tests minimized by crucible design and manufacture
- New graphite crucibles, one-sided piston
- Salts measured include NaCl, KCl, LiCl, MgCl₂ and their associated eutectics

Optimization: Minimization of sample loss will improve overall uncertainty
Properties Measurements at LANL (cont.)

<table>
<thead>
<tr>
<th>Properties</th>
<th>Experimental Techniques</th>
<th>2022+ Status, Plans</th>
</tr>
</thead>
<tbody>
<tr>
<td>Viscosity</td>
<td>Dynamic Neutron Radiography*</td>
<td>Dynamic X-ray Radiography*<sup>*</sup> Rotation Viscometry (OSU)</td>
</tr>
<tr>
<td>Heat of Dissolution, Enthalpy of Mixing</td>
<td>Drop Calorimetry*</td>
<td>Uranium measurements 2023+: Thorium and plutonium measurements</td>
</tr>
<tr>
<td>Thermal Diffusivity</td>
<td>Laser Flash Analysis (LFA)</td>
<td>2023: Test custom sample chamber</td>
</tr>
<tr>
<td>Vapor Pressure</td>
<td>Transpiration</td>
<td>Collaboration continues (Univ. of Utah) 2023: Stand up at LANL</td>
</tr>
<tr>
<td>Surface Tension</td>
<td>Contact Angle Measurement (Optical method; neutron radiography*)</td>
<td>Optical method (OSU) 2023: Initial measurements during June-Dec beamtime at LANSCE</td>
</tr>
<tr>
<td>Local Structure</td>
<td>Pair Distribution Function (Neutron)</td>
<td>Pair Distribution Function (X-ray) (MIT) XAS (MIT) Raman & UV-vis Spectroscopy (UCBerkeley)</td>
</tr>
<tr>
<td>Characterization (purity)</td>
<td>pXRD*, DSC (T<sub>m</sub>)*</td>
<td>Karl-Fisher Titration, Actinide SS-NMR*</td>
</tr>
</tbody>
</table>

*can be performed on Pu-bearing salt
Molten salt research activities include: Direct oxide reduction, electrolytic oxide reduction, salt drying; waste stream characterization; electrochemistry; sample prep
Depleted Uranium & Thorium Laboratories

- Radiological control area with inert gloveboxes, hood, benchtop
- Large-scale furnace
- Several small-scale furnaces
- **Research activities:** electrochemistry, sample preparation for properties measurements (see photo)
- **New 2022:** actinide halide synthesis glovebox
Small- and large-scale furnaces for molten salt electrochemistry

- **Electrochemistry**: Reference electrode development; corrosion studies; E^0 determination
- **Machining workspace** (metal and ceramic)
- **Characterization lab** (benchtop powder X-ray diffractometer—pXRD, benchtop scanning electron microscopy—SEM)
2021-2022 Publications in Peer-Reviewed Journals:

2022-2023 Publications: Selected Manuscripts In Preparation:

1. Electrochemistry (electromotive force measurements for standard reduction potentials)
2. Actinide halide synthesis
3. Heat capacity
4. Density by conventional (push-rod) dilatometry
5. Drop calorimetry--enthalpy of mixing
Next Steps at LANL

- **Expanding Pu research space**
 - Need to complement and leverage existing Pu capabilities (e.g., PF-4)
 - In development: Plutonium Science Laboratory (“PluS Lab”)
 - Plutonium R&D lab—flexible, unclassified, Sub-Haz-Cat-3
 - Opportunity for involving other programs (i.e., nonproliferation/safeguards)

- **Broadening actinide-molten salt research scope**
 - Fluoride salts, beryllium salts
 - Adding techniques (just two examples: actinide Nuclear Magnetic Resonance Spectroscopy (NMR), rotational viscometry)
 - Broadening to other non-MSR molten salt research areas (two examples: hydrogen generation; electrodeposition of coatings)
Next Steps at LANL (cont.)

• **Growing internal partnering**
 - Nonproliferation (integrate with other LANL global security/nonpro lines of research)
 - Sensors, in-situ monitoring (MSR health of salt + pyrochemistry process optimization)
 - Other LANSCE capabilities (for example: energy-resolved neutron imaging= “ERNI”)

• **Foster external collaborations**
 - Universities: University of Utah, MIT, UC Berkeley, OSU
 - Industrial partners, other funding mechanisms (GAIN/TerraPower, TCF/Kairos Power, MSR Campaign, Nuclear Energy Advanced Modeling and Simulation (NEAMS))
The LANL Actinide-Molten Salt Research Capability

- Successful growth from LDRD to programmatic and external investments
- Strong collaborations, both internal and external
- Growth areas identified, working to address
- Robust research capability established...and still growing!

2016
Start building molten salt lab in support of Plutonium Facility activities

2017
First molten salt LDRD projects

2019
Next-level Molten Salt LDRD projects
Initial interactions with industry (e.g., TerraPower)

2020
Three spin-off Molten Salt LDRD projects
C-Division program development funding

2021
Molten Salt LDRD DR project
Funded TerraPower project (GAIN)
PluS Lab receives first sponsor funding

2022
Funded Kairos Power project
Inclusion in MSR Campaign
PluS Lab reaches next step in funding & development
Discussion prompts: What do we need to do as a community?

As prompts for discussion, describe growth areas/opportunities where we can continue to improve, issues we’re facing as a whole

Need to increase the pipeline: students, postdocs, research technicians
- Need more skilled staff with molten salt experience
- Range of roles/levels, including permanent staff

Need stable, longer-term funding at level sufficient to sustain capabilities
- Keep advanced/specialized capabilities going, continue growing
- Enable more collaboration
- Increase pipeline
Acknowledgements

Actinide-molten salt DR team:
David Andersson, MST-8
Matt Jackson, MST-DO
Scott Parker, MST-16 (Thermophysical Properties)
Karla Erickson, C-CDE (Synthetic Chemistry)
Charles Lhermitte, Sigma-1 (Electrochemistry)
Alex Long, MST-8 (LANSCE Beam Scientist)
Ping Yang, T-1
Bo Li, T-1
Gaoxue Wang, T-1
Sven Vogel, MST-8
Josh White, MST-8
Jeremy Mitchell, MST-16
Najeb Abdul-Jabbar, MST-16
Sarah Hickam, MST-16
Arjen van Veelen, MST-8
Hongwu Xu, EES-14
Hakim Boulkhalifa, EES-14
Andrew Strzelecki, EES-14

Technicians & Engineers:
Alberto Gonzalez, MST-16
Shane Mann, MST-16
Travis Carver, MST-8

Funding:
LDRD (FY17-24)
TCF (FY22-24)
MSR Campaign (FY22-23)
GAIN (FY21-22)
LANL C-Division (FY19-20)
Civilian Nuclear Program (FY18-19)

This work was performed, in part, at the Los Alamos Neutron Science Center (LANSCE), a NNNSA User Facility operated for the U.S. Department of Energy (DOE) by Los Alamos National Laboratory (Contract 89233218CNA000001).
Questions?

Marisa Monreal
mmonreal@lanl.gov
Inorganic, Isotope, and Actinide Chemistry Group
Chemistry Division
(C-IIAC)
Los Alamos National Laboratory
Backup slides
Density using Neutron Radiography: Results

- Successful demonstration of novel, unique-to-LANL capability for **accurate measurement of liquid density of salts, including uranium-bearing mixtures**
- Two journal publications (imaging technique, and density data)

Next step: plutonium-bearing mixtures

The application of experimental techniques to complex salt systems requires innovative approaches to contend with their harsh and challenging nature (high-temperature, radioactive, corrosive, hygroscopic, more!)

Modeling of \(d\) and \(f\) elements in a molten salt environment requires the use of innovative methods.

We must resolve strong electronic correlations, Van der Waals interactions, and multiple oxidation states – and also be sufficiently computationally efficient to use in molecular dynamics (MD) simulations.

Machine learning tight binding

Drop calorimetry

Dilatometry
FY21-23 LDRD DR:

“Advanced Characterization to Enable Prediction of Actinide-Molten Salt Behavior”

The pair distribution function (PDF) gives the probability of finding an atom at a distance r from an atom at the origin.

Sven Vogel (MST-8, LANSCE), David Andersson (MST-8), and Boris Khaykovich (MIT)

- Technique characterizes crystalline, amorphous, and liquid materials
- Information on the local structure, local order of a material

*Latest data from mod-sim team: radial distribution functions from *ab initio* molecular dynamics simulations.*