

Laboratoires Nucléaires

153-120200-001-000

MSR Research Activities at Canadian Nuclear Laboratories (CNL)

2024 Molten Salt Reactor Workshop November 05-07

Mouna Saoudi Knoxville, TN, USA

Update on Nuclear Landscape in Canada Large Nuclear

- Refurbs ahead of plan
- Pickering refurb
- Bruce Site 4800MWe predevelopment
- AtkinsRéalis 1,000 MW
 CANDU[®] MONARK[™]

SMR Vendors Active in Canada

SMR Vendor	Design	Coolant type	Fuel type	Power (MWe)	Spectrum
GE-Hitachi	BWRX-300	Boiling water	Uranium oxide	300	Thermal
Westinghouse	eVinci	Sodium (heat pipe)	TRISO fuel	5	Thermal
Global First Power/USNC	MMR	Helium	TRISO fuel (prismatic)	3.5-15	Thermal
X-Energy	Xe-100	Helium	TRISO fuel (pebble)	80	Thermal
ARC Clean Technology	ARC-100	Sodium	Uranium alloy fuel	100-150	Fast
Moltex Energy	SSR-W	Molten chloride salt	Chloride fuel salt (static)	300	Fast
Terrestrial Energy	IMSR	Molten fluoride salt	Fluoride fuel salt (flowing)	390	Thermal

anadian Nuclear | Laboratoires Nucléaires aboratories | Canadiens

Three Streams of SMR Development in Canada

Illustration of GE Hitachi BWRX-300 - https://bindustry.eu/

Stream 1: On-Grid, ~300 MW_e

- Ontario Power Generation & SaskPower select GE-Hitachi BWRX-300
 - Darlington 4 units (2028 first)
 - SK 4 units (2034-2042)
- Alberta
 - SMART MOU
 - OPG & Capital Power

Illustration of Moltex SSR-W – moltexenergy.com

Stream 2: Advanced Reactors

- New Brunswick Power, Point Lepreau
 - ARC Nuclear ARC-100, LTPS submitted
 - Moltex SSR-W
- OPG + X-Energy framework agreement
- Alberta
 - Terrestrial Energy MOU
 - X-Energy Study
 - Cenovus Oil Sands Study

Illustration of Westinghouse eVinci – brucepower.com

Stream 3: Off-Grid, <15 MW_e

- Development of a pan-Canadian Framework to inform the safe deployment of SMR microreactors
 - CNL's Siting Invitation Process
 - Hosting a clean energy demonstration on a CNL-managed site (e.g. GFP MMR)
 - McMaster's Net Zero Community Project
 - USNC/GFP MOU
 - Saskatchewan Research Council (SRC) Nuclear
 - Westinghouse eVinci
 - $\circ~$ Bruce Power Feasibility Study
 - Westinghouse eVinci

CNL is a National Lab Focused on National Priorities

Restore and protect the environment

Conducting the largest and most complex environmental remediation in Canada, spanning three provinces

Clean energy for today and tomorrow

Supporting our current nuclear fleet and advancing the future ones while also leveraging vast expertise to support Canada's growing hydrogen economy, fusion research and industry's clean energy transition

) Improve the health of Canadians

Advancing R&D in radiobiology and commitment to advancing Targeted Alpha Therapy

CNL Today

✓ \$1.2B infrastructure investment

 Diverse & growing team of ~4,000; ~800 in Science & Technology

Broadening portfolio
 supporting more industries
 and academia

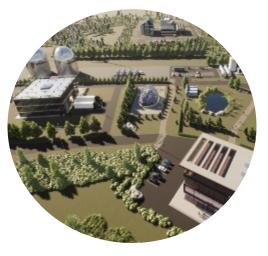
UNRESTRICTED / ILLIMITÉE

Advanced Nuclear Materials Research Centre (ANMRC)

- Advanced Nuclear Materials Research Centre (ANMRC) is designed to meet nuclear material research needs for the next 50 years
- 125,000 square foot space
- 12 hot cells and 23 laboratories
- Will replace current hot cells facilities dating back to the 1950s
- Provides research capabilities to support the life extension and long-term reliability of existing reactors and future advanced reactors
- Ground breaking occurred in Sept. 2022
- Operation expected in 2028-2029

How CNL is **Enabling SMRs**

Federal Nuclear Science & Technology Program


Helping to build a framework for SMR development & deployment in Canada Canadian Nuclear Research Initiative

Working with commercial companies to apply our nuclear capabilities to technical challenges

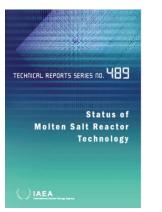
SMR Demonstration Siting

Hosting a demonstration SMR on a CNL-managed site

Clean Energy Demonstration, Innovation & Research (CEDIR) Phase 1: Advancing research on clean energy and hybrid energy systems Phase 2: Demonstrate technologies with an SMR – CEDIR Park

Canadian Nuclear | Laboratoires Nucléaires Laboratories | Canadiens New Nuclear Emerging Technologies (N2ET) Program N2ET Program

International Collaborations on MSRs



GIF MSR provisional System Steering Committee (pSSC)

- Fuel salt thermophysical and thermochemical properties
- Materials and components
- Reactor physics
- System integration

- Participation in CRPs and preparation of TECDOCs
- Co-Author of Technical Report issued in November 2023

Working Groups

- Economic Modelling
- Proliferation Resistance and Physical Protection,
- Risk and Safety
- Advanced Manufacturing and Material Engineering
- Non-Electric Applications of Nuclear Heat Task Force

Bi-Lateral Cooperations

- Canada-US
- Canada-UK
- AECL and CNL MOUs with laboratories and academia

Canadian Federal Nuclear Science & Technologies Research on MSR Systems

Active Federal S&T Projects related to MSR Technologies

Fuel & Coolant Salt Properties

- Fuel salt synthesis & purification
- Thermophysical properties measurements of molten salts
- Structural characterization
- Atomistic modelling
- Thermochemical modelling
- Fuel salt behaviour under accident conditions

Corrosion of Materials in Molten Salts

- Corrosion test
 loops
- Static corrosion tests on various materials:
 - o SS 316
 - Grade 91 steel
 - Hastelloy N
 - o Alloy 242
- Activity transport
- Electrochemistry
 & redox control

Multiphysics Modelling for Safety Performance

Coupled CFD-Neutronics MSR transient simulation tools

- Passive decay heat removal
- Self-heating fluid testing
- Exploring ZED-2 reactor
- measurements
- Beyond-design
 basis modelling
 capabilities for
 MSRs

Evaluation of waste Streams

Evaluation of waste streams from MSRs considered for deployment in Canada

 Exploring of salt waste treatment methods Evaluation and improvement of safeguards approaches and methods

Safeguards of

MSRs

•

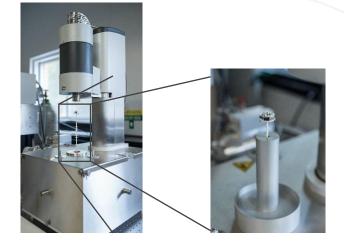
•

Proliferation Resistance & Physical Protection

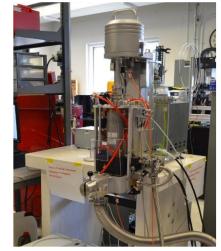
Canadian Nuclear Laboratoires Nucléaires Laboratories Canadiens

Molten salt thermophysical properties (1/2)

- Establish experimental procedures:
 - Fuel-salt synthesis
 - Molten salt encapsulation
 - ➢ High temperature DSC (T_m, C_p, ...)
 - Laser flash apparatus (thermal diffusivity)
 - XRD for phase identification
 - TGA for thermal stability
 - ICP-OES for composition
 - Oxygen analysis



Custom hermetic sample holder to enable XRD measurements of molten salts under inert atmosphere

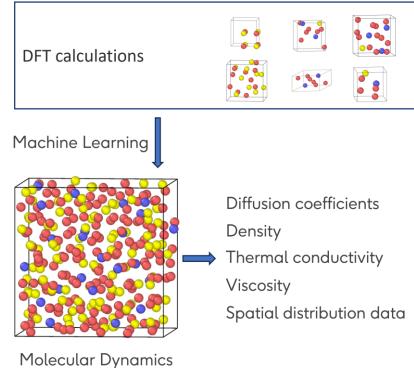


Oxygen Analyser (LECO O836)

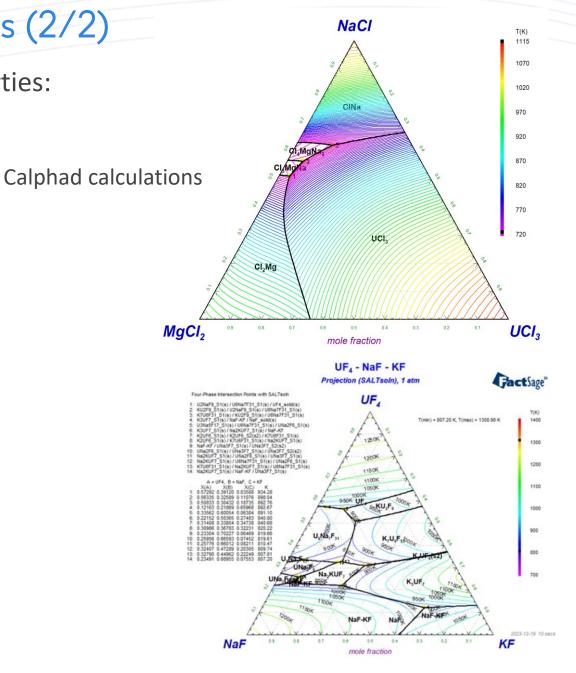
Laser Flash Apparatus (LFA)

Thermogravimetric Analyser (TGA)

Differential Scanning Calorimeter (DSC)



Ar Glovebox (O₂ < 2 ppm; H₂O < 5 ppm) Handling of non-active and active salts


UNRESTRICTED / ILLIMITÉE

Molten salt thermophysical properties (2/2)

- Modelling of molten salt thermophysical properties:
 - Thermochemical modelling
 - Atomistic simulations
 - DFT calculations
 - Finite Element Analysis

Canadian Nuclear | Laboratoires Nucléaires Laboratories | Canadiens

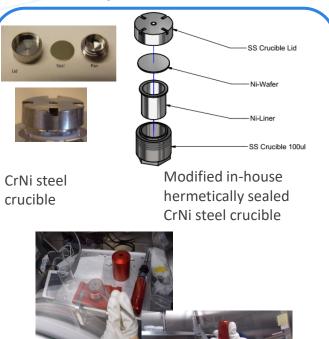
Differential Scanning Calorimetry (DSC) Measurements

Salt mixtures preparation

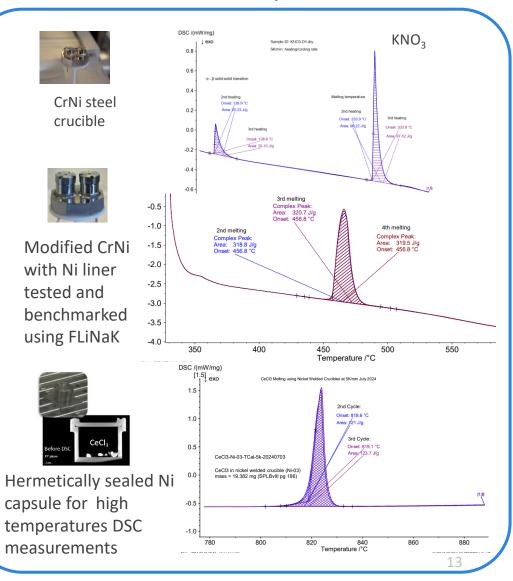
Eutectic salt mixture KCI-MgCl₂ (68–32 mol%)

Furnace pre-melt FLiNaK sample LiF-NaF-KF (46.5-11.5-42.0 mol%) Expected $T_{m, Eutectic} \simeq 454$ °C)

FuNaK (NaF-KF-UF₄)

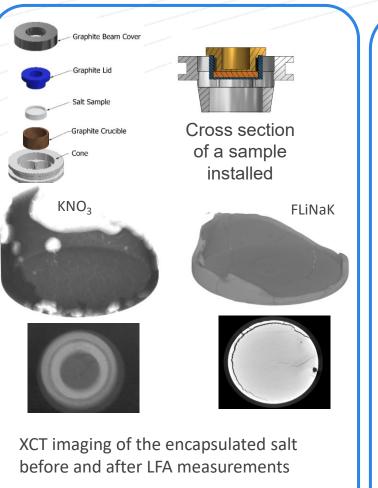


High precision analytical balance in dry argon atmosphere dry-box



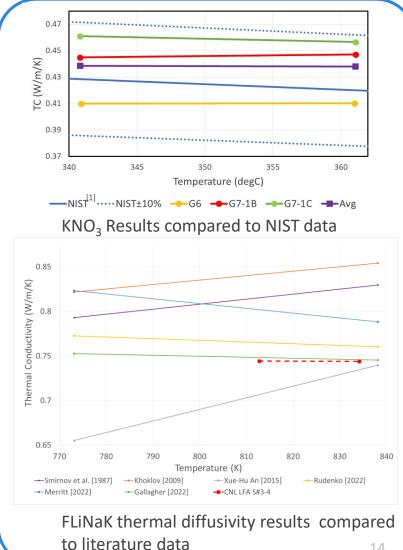
Customized Ni crucible Laser welded to maintain hermetic seal

Salt encapsulation for DSC


Validation of the encapsulation methods

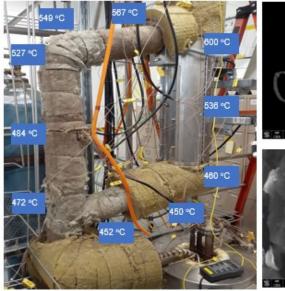
Canadian Nuclear | Laboratoires Nucléaires Laboratories | Canadiens

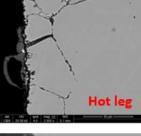
Laser Flash Analysis (LFA) Applied to Molten Salts

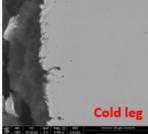

Salt encapsulation

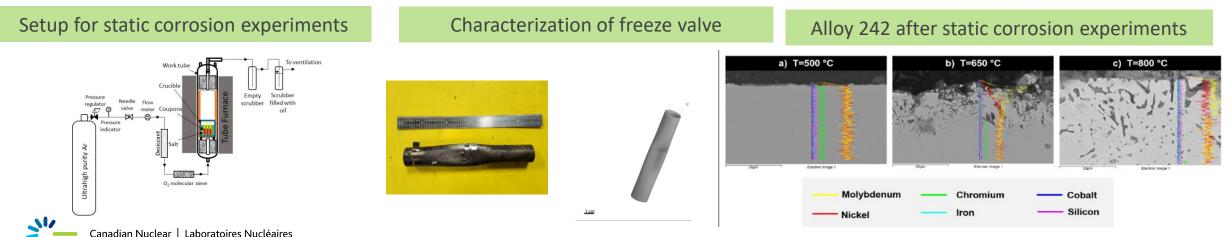
Finite Element Analysis

Validation using benchmark salts

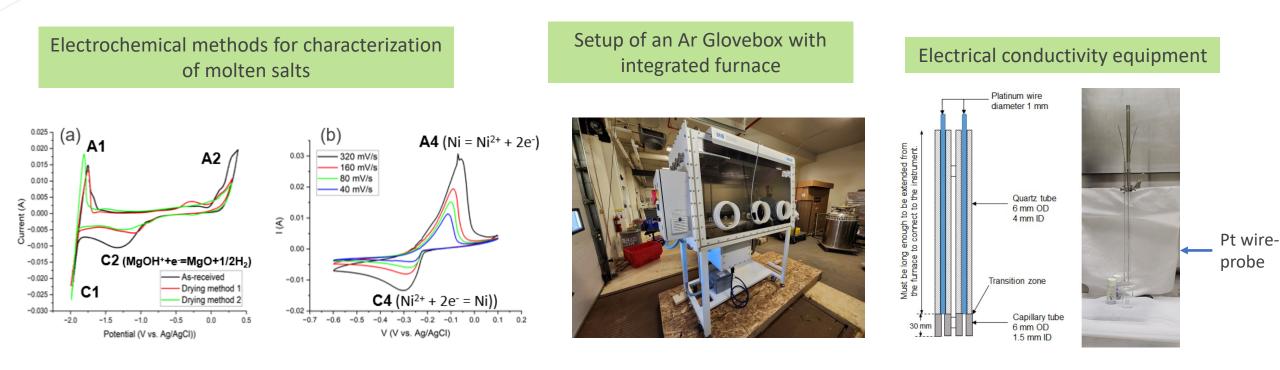

UNRESTRICTED / ILLIMITÉE


Materials Corrosion and Degradation in Molten Salt (1/2)

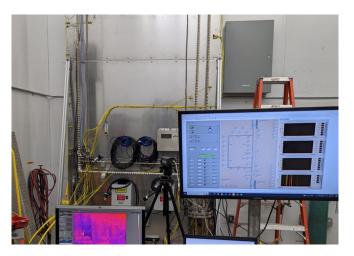

- High temperature molten salt corrosion test capability longterm Demonstration Natural Corrosion Loop (DNCL) operation with rigorously controlled salt chemistry (SS 316L exposed to chloride binary salt mixture)
- Salt and metal samples are collected for post-experiment characterization.
- After each experiment, main components are harvested from the loop to evaluate their design and the material selection.
- Static corrosion testing of candidate alloys (SS 316L, Alloy 242, and Alloy N in molten salts are on-going.

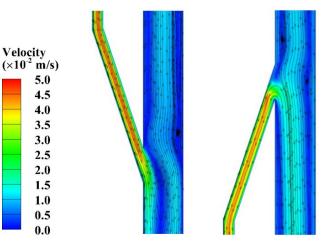

Canadiens

Temperature profile during DNCL experiment SEM micrographs of loop sections



Materials Corrosion and Degradation in Molten Salt (2/2)


- Develop electrochemical methods for impurity detection in salts
- A glovebox with integrated furnace has been delivered. Lab preparation to install the glovebox is on-going
- Development of electrical conductivity equipment using Pt-wire probe as electrodes and testing at 550 °C in KCl-LiCl (41-59 mol%)



Passive Safety Molten Salt Natural Circulation Heat Transfer Loop

Design

- Simplification of a single loop in the Direct Reactor Auxiliary Cooling System
- Main loop is 2 m tall
- Operate at ~550°C

Construction

- 316 Stainless steel
- Instrumented with fibre-optic sensors, capacitance sensors, thermocouples, ultrasonic flow sensors

Testing

- Instrumentation effectiveness
- Changes in geometry due to aging
- Data for benchmarking models e.g. CFD and System Code simulations

Summary

- CNL role is:
 - To support regulatory positions and decisions for novel nuclear fuel (e.g. fuel salt)
 To reduce uncertainties regarding safety, security and environmental issues
 - To generate knowledge and information to identify and address emerging issues related to molten salt technology

• Focus areas

- Develop modelling and experimental facilities to support MSRs
- Engage with federal stakeholders and industry to address gaps and reduce risk associated with MSR technology
- Actively seek collaboration with national and international partners to leverage resources and conduct focused R&D targeted to specific outcomes

CNL's Canadian Nuclear Research Initiative (CNRI)

December 20, 2024: Deadline for proposal submission

Supporting Technology Developers

- Program enables collaborative advanced reactor development and research projects
- The goal is to accelerate the deployment of safe, secure, clean, and cost effective SMRs in Canada and make CNL's technical capabilities and expert knowledge available and accessible to the SMR community
- Projects underway with several participants
- www.cnl.ca/CNRI

Thank You

Laboratories

Canadian Nuclear Laboratoires Nucléaires Canadiens

This work was supported by Atomic Energy of Canada Limited's Federal Nuclear Science & Technology Work Plan.

mouna.saoudi@cnl.ca www.cnl.ca