

Molten Salt Reactor P R O G R A M

Molten Salt Reactor Campaign at ORNL

Joanna McFarlane, mcfarlanej@ornl.gov ORNL Molten Salt Workshop November 5-7, 2024

ORNL IS MANAGED BY UT-BATTELLE LLC FOR THE US DEPARTMENT OF ENERGY

We are addressing the big questions for licensing MSRs

cycle

ORNL's role in the MSR campaign: Providing critical data and validated predictive models to evaluate structural materials compatibility and lifetime in molten halide salts

Purification + testing

- Salt chemistry
- Fuel salt vs Coolant salt
- Allowable impurities
- Redox control

Corrosion

- Deposition
- Temperature dependence
- Sensor Technology

Hastelloy N, NaBF₄-NaF-KBF₄8760 h, TCL, 605-460 °C, - J. Koger, Corrosion, 1974

Long-term operation

- Transmutation performance
- Salt chemistry changes
- Redox control (how much?)
- Useful predictive models

316H, FLiBe, 1000h capsule test, 650 °C - Keiser et al., JNM, 2022

FY24 Milestone: Measure the effect of molten halide salt exposure on creep rupture lifetime

Significant impact of molten salt environment on creep behavior of 316H*, 617 and 709

CAK RIDGE National Laboratory *Potential stress and salt chemistry dependence observed for 316H in NaCl-MgCl₂

al Laboratory Rishi Pillai pillairr@ornl.gov, Severine Cambier

Administer the Molten Salt Thermal Properties Database-Thermochemical (MSTDB-TC): (Ted Besmann, besmann@usc.edu)

- Library of Gibbs energy functions and models compatible with equilibrium solver FactSageTM and open-source codes
- mstdb.ornl.gov

Organize Component Data

Compound	$\Delta_{f}H^{o}(298)$ J/mol	<i>S°</i> (298) J/mol K	C _p J/mol K	Temp. Range K
CsF (I)	-535,041	108.1938	70.56	298-1400
LiF (I)	-598,653.75	42.956	64.45	298-2000
NaF (I)	-557,859.5	52.583	73.036	298-2000
KF (I)	-551,944	71.144	70.485	298-2000

Review Measurements

Provide support for MSTDB-TP (thermophysical properties) and lead measurements of thermal conductivity and viscosity

6

Tony Birri birriah@ornl.gov, Nick Termini, Ryan Chesser

Measurements being taken on coolant and fuel salt mixtures

Tony Birri birriah@ornl.gov, Nick Termini, Ryan Chesser

Atomistic simulations to assess local structure, thermophysical and transport properties (V.-A. Glezakou, B. Smith)

UCI-NaCI

• Well-separated U atoms which diffuse slower than Na/Cl; fairly stable U-Cl associations

$D_{Na} (10^{-5} \text{ cm}^2 \text{s}^{-1})$	$D_{U}(10^{-5} \text{ cm}^2 \text{s}^{-1})$	$D_{CI} (10^{-5} cm^2 s^{-1})$
5.08	3.2	5.3

NaCl(0.66)-UCl3(0.34)

Transport Properties of Pseudo-ternary Chlorides Na/K/Li-Cl

- Four different mixtures; complementary studies to experimental work by Birri and coworkers
- Self Diffusion coefficients appear to decrease with the conc. of KCl, and increase with conc. of LiCl. (coordination number holds the inverse of that trend)
- Na+ and K+ primarily exhibit hexahedral and octahedral coordination where as Li+ exhibits distorted tetrahedral.

Mix #	D _{Na}	D _K	D _{Li}	D _{CI}	т	Comp (cP)	Exp (cP)
10	3.32	6.57	7.96	5.07	968	1.08	
11	6.09	6.73	7.95	5.59	1058	1.17	1.28
12	5.39	4.74	6.41	4.18	1058	1.42	
13	9.01	10.60	12.61	8.46	1058	0.90	1.06

Vanda Glezakou glezakouva@ornl.gov

Facility to Alleviate Salt Technology Risks (FASTR)

Largest CI salt loop in DOE

Salt	NaCl-KCl-MgCl ₂
Operating Temp.	725°C
Flow rate	≤7.0 kg/s (228 lpm)
Operating pressure	Near atmospheric
Primary Materials	C-276 & Inconel 600
Loop volume	154 liters
Power	400 kW Main Heater ~71 kW trace
Primary piping ID	5.20 cm (2.05 in.)
Initial operation	December 2022

Kevin Robb robbkr@ornl.gov

Compared to LSTL, FASTR is: 2x higher capacity pump 2x larger salt volume 2x larger pipe 2x thermocouples 2x main heating capacity 3x trace heating capacity 4x number of salt flanges

Original development support by DOE-EERE SETO CPS 33875

Robb, Kevin, and Kappes, Ethan. Facility to Alleviate Salt Technology Risks (FASTR): Commissioning Update. United States: ORNL/TM-2023/2846, 2023. Web. doi:10.2172/1960689.

Robb, Kevin, Kappes, Ethan, and Mulligan, Padhraic L. Facility to Alleviate Salt Technology Risks (FASTR): Design Report. United States: ORNL/TM-2022/2803, 2022. Web. doi:10.2172/1906574.

Visualization can be used to examine two-phase flow at high resolution (10 micron)

- a) Complete system
- b) Internal visualization cell
- c) Auxiliary preheater
- d) Molten salt vessel with internal gas capilliary bubbler and transfer tube
- e) Capillary bubbler
- f) 10 mL versus 1 L cell

Measure fission gas and aerosol transport into salt off-gas

Daniel Orea, Hunter Andrews, **CAK RIDGE** National Laboratory Brandon Hunter, Kevin Robb

Loop model developed for the LSTL (Bob Salko, salkork@ornl.gov)

- A model was created in the NEAMS system T/H code, SAM
- Modeling options tuned to obtain steady-state heat balance with reasonable mass flow rate and system temperature

SAM temperature and velocity distribution prediction in LSTL

National Laboratory

SAM pressure distribution visualization

Use multiphysics mod/sim in combination with MSTDB-TC to predict radionuclide transport.

Bob Salko, Kyoung Lee leeko@ornl.gov

Bulk	Gas	Liquid	Bulk
Gas	Film	Film	Liquid
p_i pressure	p_i^*	c_i^*	c_i concentration

 $c_i^* = p_i H$

Molten salt properties and structure can be studied in situ at high temperatures by neutron radiography and neutron scattering

- Successful molten salt tests completed at HFIR MARS & SNS NOMAD DOE Office of Science beamlines.
- Collaboration with university on NEUP, NSUF, and RTE experiments
- PIE by gamma radiography, CT, and LIBS
- Collaboration with U South Carolina liquid salt thermodynamic calculations using MSTDB-TC

DOE Office of Science User Facility operated by ORNL at HFIR J. Moon et al., ACS Omega, 6, <u>https://doi/10.1021/acsomega.4c01446</u>.

CAK RIDGE National Laboratory **Points-of-contact: Joanna McFarlane, Kevin Robb, Daniel Orea, Molly Ross Sponsor:** DOE Office of Nuclear Energy, DOE Office of Science

Sample Holder

Inter-lab collaboration

15

ORNL Directory

- 1. Salt synthesis, purification, characterization Richard Mayes mayesrt@ornl.gov, Severine Cambier
- 2. Thermochemistry Ted Besmann besmann@usc.edu
- 3. Fundamental thermophysical properties Tony Birri birriah@ornl.gov, Nick Termini termininc@ornll.gov, Vanda Glezakou glezakouva@ornl.gov, Brett Smith, Ryan Chesser
- 4. Corrosion–Rishi Pillai pillairr@ornl.gov, Be_2C Anne Campbell campbellaa@ornl.gov,
- 5. Graphite/salt interactions Nidia Gallego gallegonc@ornl.gov
- 6. Fission gas and aerosol generation and transport small scale and large-scale facilities Kevin Robb robbkrr@ornl.gov, Daniel Orea oread@ornl.gov, Molly Ross rossmc@ornl.gov, Hunter Andrews and rewshb@ornl.gov
- 7. Sensor development need to monitor reactor & off-gas during operation and after operation Hunter Andrews, Daniel Orea, Zechariah Kitzhaber, Peggy Milota, Brandon Hunter)
- 8. NEAMS modeling SAM, MOLE, MELCOR Bob Salko salkork@ornl.gov, Kyoung Lee leeko@ornl.gov
- 9. Cross-cutting technical issues with other programs (e.g., Fusion materials Rishi Pillai, HALEU- Leigh Martin martinlr@ornl.gov, safety Be handling Nidia Gallego, isotope separation Kristian Myhre myhrekg@ornl.gov, Nonpro Karen Hogue hoguekk@ornl.gov, Nuclear Security Prashant Jain jainpk@ornl.gov, Iodine capture NE43 Katie Johnson johnsonkr@ornl.gov, NSRD Thien Nguyen nguyend@ornl.gov)
- 10. Office of Science facilities at ORNL SNS, HFIR, neutrons.ornl.gov, HPC Frontier https://www.olcf.ornl.gov/tag/hpc/
- 11. New initiatives MPEX, MDF, gamma irradiation

Posters and presentations at the workshop

Presentation & poster: Nidia Gallego – Molten Salt and Graphite

Presentation: Hunter Andrews – Off-gas and waste forms

Posters on Salt Chemistry and Properties

- Nick Termini
- Ryan Chesser
- Alex Ivanov
- Zechariah Kitzhaber

Posters on Materials Science

- Nidia Gallego
- Rishi Pillai
- Peggy Milota

Thank you

Funding from DOE-NE-5 Advanced Reactor Technology, Molten Salt Reactor Campaign

Honoring Jim Keiser (1942-2024) & Bruce Pint (retired Oct 18, 2024)

mcfarlanej@ornl.gov

Office of **NUCLEAR ENERGY**