

Molten Salt Reactor P R O G R A M

Real-Time Characterization of Salt Aerosol Particles

Sara Thomas Chemical and Fuel Cycle Technologies Division Argonne National Laboratory

2024 Molten Salt Reactor Workshop 5 November 2024

Safety assessments for MSR licensing

- Credible accident scenarios (e.g., fuel salt spill) are evaluated using validated models that simulate accident progression
- Model development and validation require experimental data on processes likely to affect safety outcomes
- Formation of radionuclide-bearing aerosols is particularly important to accident consequence
- Significant data gaps on aerosol formation mechanisms from molten salt systems

Relevant aerosol formation processes during fuel salt spill accident

Safety assessments for MSR licensing

- Credible accident scenarios (e.g., fuel salt spill) are evaluated using validated models that simulate accident progression
- Model development and validation require experimental data on processes likely to affect safety outcomes
- Formation of radionuclide-bearing aerosols is particularly important to accident consequence
- Significant data gaps on aerosol formation mechanisms from molten salt systems

Relevant aerosol formation processes after fuel salt spill accident

Salt aerosol generation and realtime characterization

Objective: Develop and demonstrate method for measuring salt aerosol particle size and concentration in real time

- Generate salt aerosol particles by condensing salt vapor in a cool gas stream
- Use optical light scattering spectrometer manufactured by Palas to characterize generated salt particles
- Demonstrate with cesium iodide salt

Challenges:

- Sensor compatibility with corrosive and high temperature gas streams
- Maintaining measurement accuracy when gas composition and temperature change

Schematic of salt aerosol generation system

Salt aerosol generation and realtime characterization

Objective: Develop and demonstrate method for measuring salt aerosol particle size and concentration in real time

- Generate salt aerosol particles by condensing salt vapor in a cool gas stream
- Use optical light scattering spectrometer manufactured by Palas to characterize generated salt particles
- Demonstrate with cesium iodide salt

Challenges:

- Sensor compatibility with corrosive and high temperature gas streams
- Maintaining measurement accuracy when gas composition and temperature change

Argonne salt aerosol generation and measurement system

Demonstration of sensor accuracy

Concentration and size accuracy demonstrated by comparing sensor results to those obtained by independent methods

- Independent particle concentration determined gravimetrically by weighing particles collected on filter
- Independent particle size distribution measurement made by SEM-EDS analyses of particles collected on adhesive

Particle size distributions

Future work on real-time aerosol characterization

- Conduct separate effects tests on aerosol formation to generate experimental data that can be used to parameterize process models
 - Static versus sparged salt
 - Salt and gas composition and temperature
 - Presence of humidity and oxygen in atmosphere
- Employ real-time aerosol characterization method in engineering scale tests that simulate salt spill accidents

Report: Thomas, Sara (2024) "Method for Real-Time Salt Aerosol Concentration and Size Measurements for Molten Salt Reactor Safety Assessments." Argonne National Laboratory Report ANL/CFCT-24/25.

Acknowledgements

- This work was conducted for US DOE Office of Nuclear Energy Advanced Reactor Technologies Molten Salt Reactors Campaign.
- Work at Argonne National Laboratory is supported by the U.S. Department of Energy Office of Science under contract DE-AC02-06CH11357.

Contact: sathomas@anl.gov

