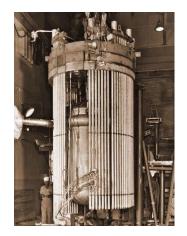
TERRESTRIAL EN ER GY

Delivering Carbon-free Thermal and Electrical Energy

Terrestrial Energy Progress Overview
Maria Ivanova: mivanova@terrestrialenergy.com

November 7th, 2024

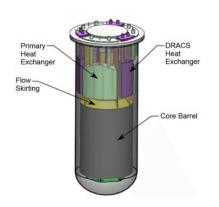
November 7th, 2024


Agenda

- I Introduction to Terrestrial Energy
- Integral Molten Salt Reactor Plant Overview
- **Design Development Progress**
- **IV R&D Progress**
- **V** Regulatory Engagements
- **∨** | **Supply Chain**

Introduction to Terrestrial Energy

IMSR design is built on proven MSR technology demonstrated at the Oak Ridge National Laboratory (ORNL):


1958 -1969, 1980

First Molten Salt Reactor (MSR) research program (1960)¹

and

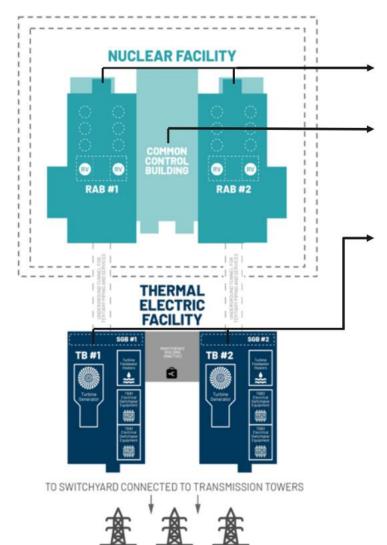
Denatured Molten Salt Reactor (DMSR) conceptual design (1980)²: use of Low Enriched Uranium (LEU) with a once-through fuel cycle

2010

Small Modular Advanced High-Temperature Reactor (Sm-AHTR) design, using solid fuel and molten salt cooling ³: cartridge core design

Terrestrial Energy IMSR Gen IV Advanced Modular Reactor

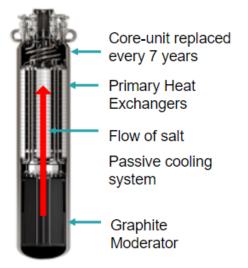
>2012


IMSR is a molten salt reactor that uses:

- Fluoride-based fuel salt mixture
- Under 5% LEU once-through fuel cycle
- Thermal spectrum
- Graphite moderator
- Integral core architecture

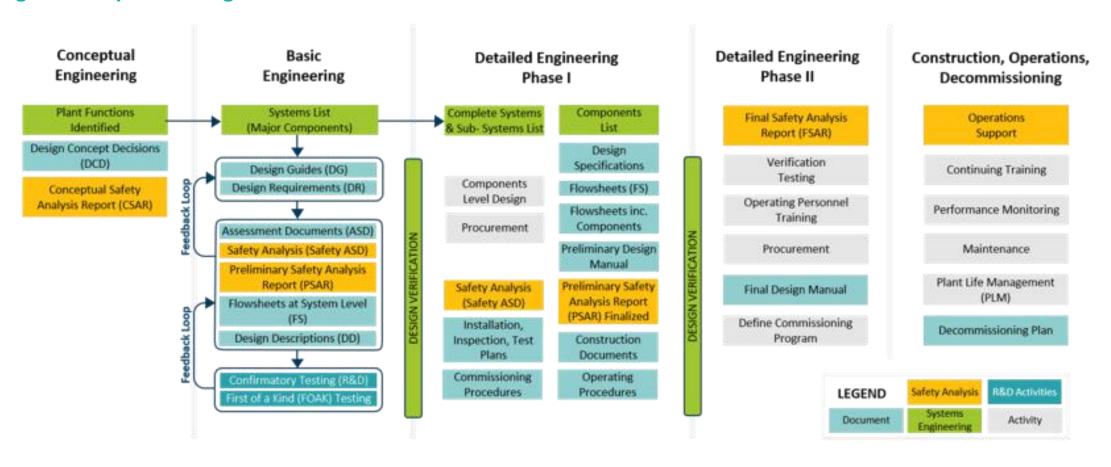
- ORNL, Molten Salt Reactor History and ORNL-2474 Quarterly Progress Reports 1958-1976
- 2. ORNL, Conceptual Design Characteristics of a Denatured Molten-Salt Reactor with Once-Through Fueling
- ORNL, Pre-Conceptual Design of a Fluoride-Salt-Cooled Small Modular Advanced High-Temperature Reactor

November 7th, 2024


Design Development Progress

Reactor Auxiliary Buildings (RAB), each containing an **RAB** operating IMSR Core-unit and associated nuclear Buildings and support systems necessary to transfer heat in the reactor to the associated Thermal Electricity Facility. Located between the two RAB structures, supports Common and provides services to both RAB units. Utilizes a common Main Control Room (MCR) for both RABS, Control Class 1 battery systems, Secondary Coolant Systems Building and Tertiary Coolant Salt pump motors for the RAB's. Each Turbine Building (TB) with its associated Steam Generation Building (SBG). Contains non-nucleargrade, industry standard power equipment. The TB design utilizes conventional structural steel siding Turbine supported by a reinforced concrete basement. The **Buildings** TB houses the Turbine Generator Set (TG). Condenser, and the associated feedwater, steam systems, electrical systems and other required equipment

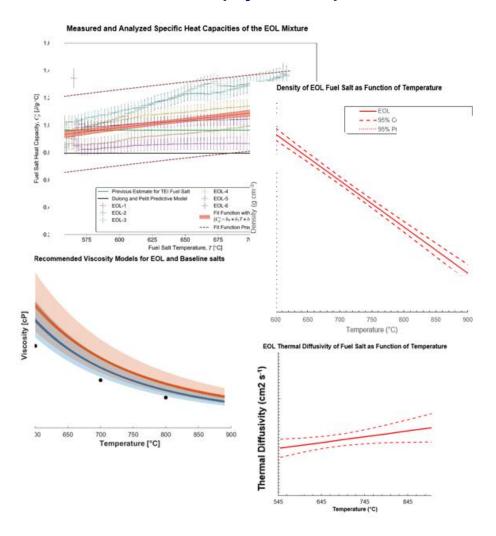
- ~400 MWt (thermal)
- 44 % efficiency
- 56 years operation life (7 years per Core-unit)
- Load-following capability


IMSR Core-unit

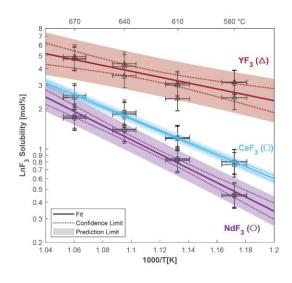
Terrestrial Energy Terrestrial Energy Progress Overview November 7th, 2024

5

Design Development Progress


November 7th, 2024

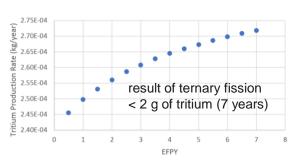
6


R&D Progress

Fuel Salt Qualification

Fuel Salt Thermo-physical Properties

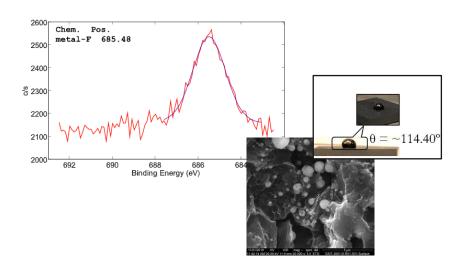
Fission Product Retention



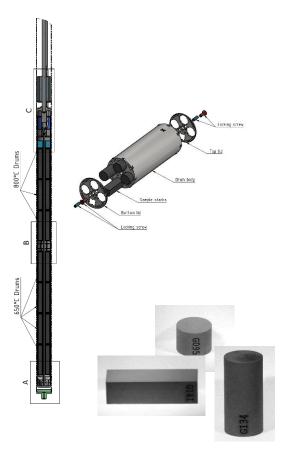
Handling of Waste Fuel Salt

Strategy is aligned with the Durable Fuel Waste Handling Concept of NWMO.

Tritium Production Rate in IMSR400

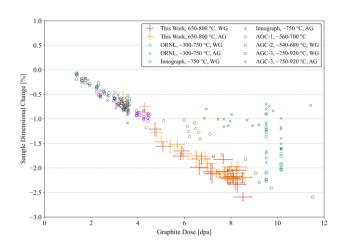

November 7th, 2024

7


R&D Progress

Graphite Qualification

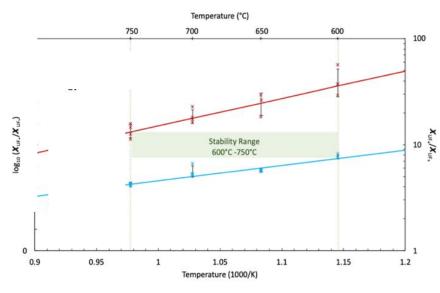
Fuel Salt – Graphite Interaction



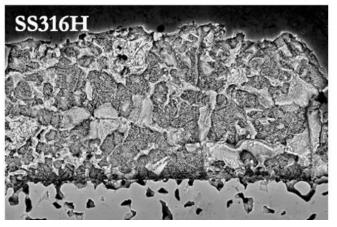
Graphite Irradiation Test Rig

Post-irradiation Graphite Property Measurements (196 samples)

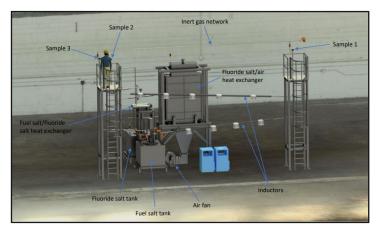
- Dimensions
- Mass
- Coefficient of Thermal Expansion
- Dynamic Young's Modulus
- Thermal Conductivity
- Surface Analysis

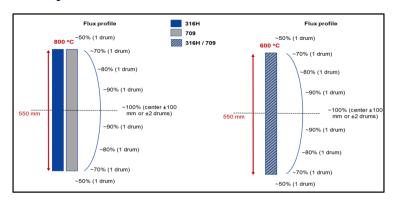


R&D Progress


Alloy Qualification

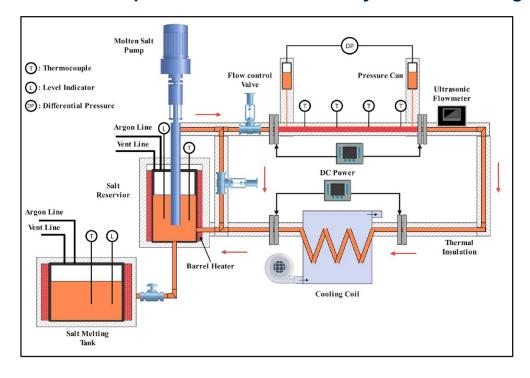
ASME Section III, Div. 5


Salt Electrochemical Potential

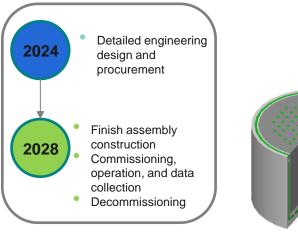

Static Corrosion Data

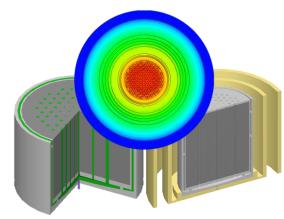
Corrosion Test Rig

Alloy Irradiation Calculated Flux Profile



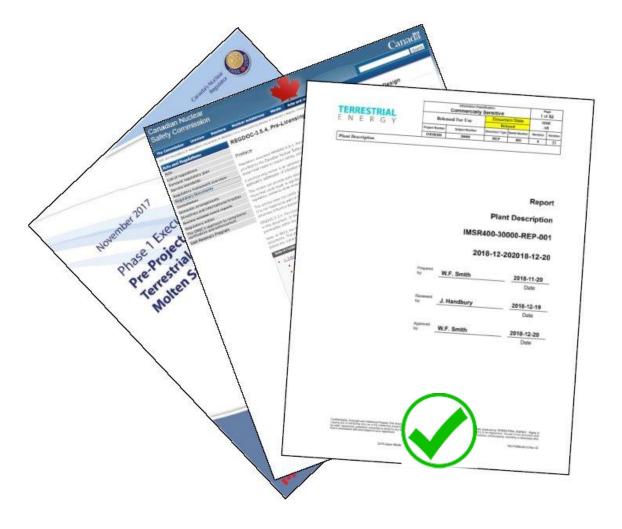
November 7th, 2024


R&D Progress


Physics and Thermal Hydraulics Test Programs

Schematic Representation of Thermal-hydraulics Test Rig

Physics Test – Core Model



Terrestrial Energy Terrestrial Energy Progress Overview November 7th, 2024

Regulator Engagements

Regulatory reviews

Canadian Nuclear Safety Commission (CNSC)

2023: "no fundamental barriers to licensing" the IMSR Plant for commercial operation were identified in the Vendor Design Review (VDR)

Scope of VDR

- 19 Focus Areas were addressed, relating to the "Safety and Control Areas" of a future license application
- Review and audit of Terrestrial Energy's engineering processes, design and analysis procedures and methodologies

United States Nuclear Regulatory Commission

2024: Working on standard design approval (PDC review)

United Kingdom Office for Nuclear Regulation

2025: Generic Design Assessment

November 7th, 2024

Supply Chain

Terrestrial Energy's Contracted Supplier Network

Plant & Infrastructure	Nuclear fuel	R&D	Graphite	Services
KSB 6	orano (NRG Nuclear. For life.		TÜVRheinland® Risktec
L3HARRIS	Westinghouse	FRAZER-NASH CONSULTANCY VIRGINIA TECH	IBIDEN	KINECTRICS
ptc	* Nuclear Stewardship	Argonne Argonator	Mersey	ACCON
SIEMENS COCICY	Cameco	Canadian Nuclear Laboratories	TOYO TANSO Inspiration for Innovation	ΗΔΤCΗ
BWXT Canada Ltd.	* Tier 2 supplier; subcontractor to Westinghouse	Idaho National Laboratory Pacific Northwest NATIONAL LABORATORY		AECOM

November 7th, 2024

Supply Chain

Fuel Salt Supply

Process Step	Evidence and Justification		
UF ₆ enrichment to 2.4 or 4.9 wt%	Urenco (Capenhurst, UK)		
eUF ₆ Transportation package	30B cylinders		
eUF ₆ to eUO ₂ deconversion, eUO ₂ storage and handling	Springfields fuels Ltd (since 1996)		
eUO ₂ storage and handling	Springfields fuels Ltd. have an automated buffer store in the oxide fuel complex (which has been operational since 1996). UO ₂ is stored in sealed drums to keep dry and free from contamination.		
eUO ₂ to UF ₄ conversion, eUF ₄ storage and handling	Springfields fuels Ltd (Kiln Plant)		
Fuel Salts synthesis	National Nuclear Lab (UK)		
Fuel Salts transportation	BU-D (outer drum = 213L, inner drum = 65 L); Container (ISO-certified, 20-foot, capacity is 70 BU-D packages); Container Vessel (Capacity is 4 containers or 280 BU-D packages)		

BU-D

ISO-certified 20-foot Container

