Wielenga Innovation Static Salt Reactor WISSR Progress and Potential

MSR Workshop November 5-7, 2024 Knoxville, TN

T. Wielenga¹, W. S. Yang²

¹Wielenga Innovation Foundation, Inc.

²University of Michigan

Wielenga Innovation Foundation, Inc.

- Non-Profit Corporation for creativity and innovation
- Open research project: WISSR, WISST
- Website: WiFound.org, Wielenga.org
 - WISSR: www.wifound.org/nuclear-reactor
 - Contact: Thomas@Wielenga.org

Overview

- Two versions:
 - WISSR: annular chambers
 - WISTR: tank with helical tube cooling
- Thermal analysis on WISSR
- Throttle control worth on both
- Pressure supported fuel movement on temperature change
- Fuel cycle analysis on both with no fuel recycling
- Corrosion mitigation
- Fuel recycling method with NASICON

WISSR Reactor layout

- Molten salt fuel
- Thin annular cylinders
- 4 Regions
- Surrounding reflectors
- Fuel level is pressure controlled
- 1 throttle to 4 fixed chambers
- 4 Fuel reservoirs below
- Accumulator: shuffling/shutdown
- Molten salt coolant
- Coolant flows down outside and up through core
- Vessel below ground
- Emergency air cooling

WISSR - approach

- Utility scale power: 500 600 MWe
- Molten salt reactor
 - Variable fuel control
 - Static molten salt U/TRU fuel
 - Flowing molten salt coolant
 - Fast spectrum chloride salts
 - Recycled fuel TRU from pyroprocessed LWR waste
 - Easily fueled online refueling, reprocessing
 - High temperature -> efficiency
- Economic to build
 - Road transportable core factory made
 - Stainless steel construction
 - Low pressure thinner walls

- Fuel salt
 - o 55NaCI-45(U,TRU,RE)CI₃
 - TRU recovered from 10-year cooled PWR used fuel of 50 MWd/kg burnup
 - Assumed weight fractions in recovered fuel
 - U: TRU: RE (rare earth)
 - = ~20%: ~71%: ~9%
- Coolant salt
 - o 60NaCl-40MgCl₂
 - Melting point: 741K
 - o 15.11NaCl-38.91KCl-45.98MgCl₂
 - Melting point: 675K

Safety

Controllable

- Negative thermal, Doppler, overall reactivity coefficients
- Liquid control via pressurized helium
- No mechanicals in reactor, simple mechanical gas valves outside
- Scrams on power loss, throttles go to zero
- Redundant systems
 - 4 independent throttles and reservoirs
 - Redundant helium pressure supplies
- Severe emergency dilutes fuel with coolant

Throttle control

- Annular cylinders in core, 4 regions
- Reservoirs below
- Differential gas pressure controls levels
- Valve settings:
 - 1. Increase reactivity
 - 2. Normal running
 - 3. Reduce reactivity (default)
- Power loss drains throttle fuel
- Redundant systems

Pressure Supported Fuel movement

Results:

- Fuel moves up very little
- Most expansion moves toward reservoir
- Leaving 1% space in top of core results in no danger of overtopping
- All modeled reactors had similar characteristics
- To increase movement toward reservoir
 - Increase gas space above reservoir
 - Increase the interface area in reservoir

Neutronics Analysis Results

NUCLEAR ENGINEERING &

RADIOLOGICAL SCIENCES UNIVERSITY OF MICHIGAN

- Critical TRU fraction in HM: 45.5 w/o
 - k-eff: 1.00459±15 pcm

Wielenga Innovation

Foundation, Inc.

WiFound.org

- Power distribution
 - Peak power density: 190 MW/m³
 - Radial peaking factor: 1.50
 - Axial peaking factor: 1.34

WISSR Neutronics Analysis Results

- Reactivity feedback coefficients
 - Fuel Doppler coefficient @ 1200K:
 -0.21±0.03 pcm/K
 - Fuel salt density coefficient:
 -7.0±0.2 pcm/K
 - Coolant temperature coefficient: 4.0±2.1 pcm/K
- Fuel depletion

Wielenga Innovation

Foundation, Inc.

- Reactivity loss: -10.3 pcm/day
- Fuel salt charge rate to compensate reactivity loss: 6.8 kg/day
- Reactivity control requirement: 2839 pcm
 - Power defect: 2038 pcm
 - 15% overpower: 306 pcm
 - RMS total uncertainty: 408 pcm

WiFound.org

Region	Botto	m 3/4	Top 1/4	
	value	std	value	std
1a	398	21	63	21
1b	2150	21	283	21
2	2294	22	291	21
3	1698	21	167	21
4	916	20	89	20
All	8628	24	1067	21

Shutdown margin

- 1a & 1b & 4 with the largest worth chamber stuck: 259 pcm
- 2 & 3 with the largest worth chamber stuck: 717 pcm

WISTR - helical coolant tubes in a fuel tank

- Tank fuel connections easier
- No concern regarding chamber width changes
- Helix reduces stress on tubes from thermal expansion
- Concentrates cooling at hot spot
- Increases tube separation at tube sheet

Configuration of WISSR Tank Design

- Coolant tubes are arranged in a modified circular lattice.
- Design parameters
 - Tube diameter: 1.5 cm; Radial pitch: 2.5 cm; No. of tube rings: 72
 - Instrument channel radius: 3.75 cm (replace innermost two rings)
 - Annular fuel region occupies integer number of circular rings
 - Throttle regions act as region splitter, located at the outer boundary of each region to reduce peak power (75% filled)
 - Total number of tubes: 15330
 - 1.25 cm gap between lattice and tank wall filled with fuel

Region	# tube rings	Outer radius (cm)	Throttle inner radius (cm)	# tube rings in throttle
R1a	16	43.75	36.25	3
R1b	18	88.75	81.25	3
R2	15	126.25	118.75	3
R3	11	153.75	148.75	2
R4	10	180.00	173.75	2

WISTR - Control Worth of Throttle Fuel at BOL

- Reference throttle fuel <u>height</u> is set at 75%
- Estimated with DIF3D calculations using ISOTXS generated for the chamber design at BOEC
 - Cross sections will be regenerated for new equilibrium core configuration
- Reactivity worth of throttle regions at BOL for the tank design:

Throttle Fuel v	Fuel volume	Reactivity	Worth (pcm)	 Required reactivity control capacity estimated for the chamber designation (NET paper) 		
region (m ³)		Top 25% Bottom 75%				
R1a	0.39	148	1115	Table 7 Estimated reactivity control requirement (pcm).		
R1b	0.83	269	2285	Power defect	2243	
R2	1.21	285	2574	15% overpower Uncertainties	336	
R3	0.98	147	1401	Power defect (20%) Burnup reactivity loss for 100 days (40%)	449 412	
R4	1.64	158	1447	Criticality prediction Root-mean-square sum	280 670	
Collective	5.05	1006	8822	Total	3249	
				= If the second momentum entropy (DO) is structured, at 4000/ the	a fila final la cal de	

If the most reactive region (R2) is stuck at 100% throttle fuel level, the remaining throttle regions can provide ~6680 pcm reactivity reduction.

Comparison of Equilibrium Cycle Performance

Core design	Chamber	Tank
TRU fraction of fresh fuel (at%)	60.4	35.8
Equilibrium cycle length (day)	102.6	183.6
HM feed rate (kg/day)	6.5	8.2
TRU feed rate (kg/day)	4.2	3.2
Equil. HM discharge burnup (atom%)	19.6	15.5
Burn rate of HM (kg/day)	1.27	1.27
Burn rate of TRU (kg/day)	1.04	0.67
TRU conversion ratio	0.18	0.45
TRU destruction rate (%/cycle)	24.6	21.1

Handling corrosion with "passivation"

- Principle: Pick least active metal in salt as sacrificial element
- For fuel, sacrificial metal is Uranium
 - Does not reduce TRU chlorides to metal
 - Corrodes before the iron, chromium and nickel in stainless steel
 - Uranium wire feed into fuel tank
- For coolant, sacrificial metal is Magnesium
 - Does not reduce sodium or potassium
 - Corrodes before the iron, chromium and nickel in stainless steel
 - Magnesium rod in cool part of coolant stream (near pump)

Recycling approach

- Based on Sodium Super-Ionic Conductor -NASICON
- Conducts Na⁺ ions through beta-alumina ceramic
- With NaCl molten salt on both sides, an electric potential makes one side reducing (from excess sodium) and one side oxidizing (from excess chlorine)

- Reduce TRU and Uranium to metallic on reduction side but stop when lanthanides are reached
- Remove salt and treat as waste
- Chlorinate metallic TRU and Uranium to salt in fresh salt, it becomes fuel salt
- Remainder is waste
- Possible liquid electrodes cadmium or bismuth
- Tabletop size for WISSR and WISTR (4 5 liters / day)

Recycler schematic

Summary

- A new static molten salt reactor concept WISSR has been developed
 - Controls a nuclear reactor by moving a molten salt fuel into or out of the core
 - Fast spectrum TRU-burner reactor
 - Many safety features
 - Compact 500 MWe core design
 - NaCl, (TRU, U, RE)Cl₃ fuel
 - NaCI-KCI-MgCl₂ coolant
- Two configurations:
 - Annular chambers (WISSR),
 - Tank w/ helical tubes (WISST)
- Corrosion mitigation: use least active salt metal to "passivate" system
- Compact fuel recycling: salt -> metal -> salt using NASICON
- Open research: get involved!

